• Title/Summary/Keyword: 망간제거

Search Result 122, Processing Time 0.024 seconds

Study of Kinetics for Removal H2S by Natural Manganese ore Sorbent (황화수소 제거를 위한 천연망간광석 탈황제의 반응 속도 연구)

  • Yoon, Yeo Il;Kim, Myung Wook;Kim, Sung Hyun
    • Clean Technology
    • /
    • v.7 no.3
    • /
    • pp.187-194
    • /
    • 2001
  • The desulfurization process which belongs to the gas refining part is the unit process that eliminates $H_2S$ and COS in the coal gas formed by the coal gasification part in the integrated gasification combined cycle(IGCC). In this study, natural manganese ores were selected as the raw material of the desulfurization sorbent due to economical efficiency. Initial rates for the reactions between $H_2S$ and desulfurization sorbent using natural manganese ores were determined in a temperature range of $400{\sim}800^{\circ}C$ using a thermobalance reactor. All reactions were first order with respect to $H_2S$ and were in accord with the Arrhenius equations. When sulfidation reaction was controlled by diffusion, the temperature dependence of the effective diffusivity was given by the Arrhenius equation. Activation energies and frequency factors were obtained from the product layer diffusion coefficient of various sorbents by plotting as Arrhenius equation form.

  • PDF

Biological Manganese Removal in Water Treatment (정수처리에서 생물학적 망간처리)

  • Kim, Berm-Soo;Yoon, Jaekyung;Ann, Hyo-Won;Kim, Chung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.20 no.1
    • /
    • pp.44-52
    • /
    • 2006
  • Bio-filtration processes using honeycomb tubes (process 1) and aeration and manganese-sand filtration (process 2) were evaluated for the biological manganese removal efficiency. The concentration of manganese at effluent was stabilized after 20days operation in process 1. It was estimated the required time for attaching and growing microorganisms to honeycomb tubes. In long term of operation periods, manganese removal efficiency was dropped for the excessively attached biofilm and manganese dioxide to honeycomb tubes. It took several days for normal operation in process 2, after that manganese removal efficiency was increased to 98% and stabilized for 1.5 years. Microorganisms in process 1 and 2 were isolated and cultured to characterize manganese-oxidizing bacteria. Among the four types of colony, light brown colony was turned blue color by leuco crystal violet spot test. Stenotropomonas genus, known as manganese-oxidizing bacteria, was identified by 16S rDNA partial sequencing analysis which was isolated in process 1 and 2. For the biological treatment to remove manganese, these two considerations are important. One is to choose the proper media attaching manganese oxidant, another one is to define the cultural condition of isolated manganese-oxidizing bacteria.

Characteristics of electrical conductivity in Mn $oxide/IrO_2/Ti$ electrode (Mn $oxide/IrO_2/Ti$ 전극의 전기전도도 특성)

  • Kim, Bong-Seo;Lee, Dong-Yoon;Lee, Hee-Woong;Chung, Won-Sub
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.485-488
    • /
    • 2004
  • 1M, 2M 황산망간 수용액에서 25회 dipping하여 대기중 $450^{\circ}C$에서 1시간동안 열분해법으로 Mn 산화물을 형성시켜 Mn $oxide/IrO_2/Ti$ 전극을 제조하였다. 제조된 Mn $oxide/IrO_2/Ti$ 전극은 XRD를 통하여 MnO의 결정구조를 가지는 것을 확인하였다. 또한 전극 표면은 열분해법으로 발생하는 가스에 의해 미소 균열이 형성되어 있었다. dipping 횟수가 증가할수록 피복되는 Mn 산화물의 무게는 감소하였고, 이것은 $450^{\circ}C$에서의 계속적인 열처리에 의해 열분해되어 제거되는 가스로 인해 무게가 감소됨을 알 수 있었다. 황산망간 수용액의 농도가 높으면 형성되는 Mn 산화물의 무게도 증가하였다. 황산망간 수용액에서 25회까지 dipping을 한 후 전기비저항의 변화는 초기 Mn 산화물이 형성되는 경우에는 비저항이 증가하다가, 일정 횟수 이상에서는 감소함을 알 수 있었다. 또한 황산망간 수용액의 농도가 클수록 비저항이 증가하는 것으로 나타났다.

  • PDF

Comparison of the As(III) Oxidation Efficiency of the Manganese-coated Sand Prepared With Different Methods (망간코팅사 종류별 독성 3가 비소의 산화특성에 관한 비교 연구)

  • Kim, Byeong-Kwon;Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.2
    • /
    • pp.62-69
    • /
    • 2008
  • In this study physicochemical characteristics and stability of various manganese coated sands (MCS) prepared with different methods were evaluated. In addition, removal efficiencies of As(III) by each MCS were compared. Four different MCSs were used; B-MCS prepared by baking method, W&D-MCS prepared by wetting and dry method, NMCS prepared during the water treatment process and Birm which is a commercial MCS widely used for the removal iron and manganese. The manganese content in each MCS was following order: Birm (63,120 mg/kg) > N-MCS (10,400 mg/kg) >W&D-MCS (5,080 mg/kg) > B-MCS (2,220 mg/kg). Birm showed the least solubility (% basis) in acidic conditions. As(III) oxidation efficiency of B-MCS was continuously increased as the solution pH decreased. While As(III) oxidation efficiency of N-MCS and Birm was minimum around neutral pH. The increased As(III) oxidation efficiency above neutral pH for N-MCS and Birm could be due to the competitive adsorption of $Mn^{2+}$, which was produced from reduction of $MnO_2$, onto the surface of aluminum and manganese oxides.

Removal of Soluble Mn(II) using Multifunctional Sand Coated with both Fe- and Mn-oxides (철과 망간이 동시에 코팅된 다기능성 모래를 이용한 용존 Mn(II) 제거)

  • Lim, Jae-Woo;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.32 no.2
    • /
    • pp.193-200
    • /
    • 2010
  • This study evaluated treatability of soluble Mn(II) using multifunctional sand media simultaneously coated with iron and manganese. In the preparation of IMCS(Iron and Manganese Coated Sand), 0.05 M Mn(II) solution and Fe(III) solution was mixed with sand at pH 7. The mineral type of IMCS was identified as the mixture of ${\gamma}-MnO_2$, goethite and magnetite($F_{e3}O_4$). The contents of Mn and Fe coated onto sand were 826 and 1676 mg/kg, respectively. The $pH_{pzc}$ of IMCS was measured as 6.40. The removal of soluble Mn(II) using IMCS and oxidants such as NaOCl and $KMnO_4$ was investigated with variation of the solution pH, reaction time and Mn(II) concentration in a batch test. The removal of Mn(II) on IMCS was 34% at pH 7.4 and the removals of Mn(II) on IMCS in the presence of NaOCl(13.6 mg/L) at pH 7 and $KMnO_4$(4.8 mg/L) at pH 7.6 were 96% and 89%, respectively. The removal of Mn(II) using IMCS and oxidants followed a typical cationic type, showing a gradual increase of removal as the solution pH increased. The removal of Mn(II) was rapid in the first 6 hrs and then a constant removal was observed. The maximum removed amount of Mn(II) on IMCS-alone and IMCS in the presence of oxidants such as NaOCl(13.6 mg/L) and $KMnO_4$(4.8mg/L) were 833.3, 1428.6 and 1666.7 mg/kg, respectively. Mn(II) removal onto the IMCS in the presence of oxidants was well described by second-order reaction and Langmuir isotherm expression.

Preparation of PVdF Composite Nanofiber Membrane by Using Manganese-Iron Oxide and Characterization of its Arsenic Removal (망간-철 산화물을 이용한 PVdF 나노섬유복합막의 제조 및 비소 제거 특성 평가)

  • Yun, Jaehan;Jang, Wongi;Park, Yeji;Lee, Junghun;Byun, Hongsik
    • Membrane Journal
    • /
    • v.26 no.2
    • /
    • pp.116-125
    • /
    • 2016
  • This study described a synthesis of MF having a arsenic removal characteristics and the fundamental research was performed about the simultaneous removal system of both As(III) and As(V) ions with the composite nanofiber membrane (PMF) based on PVdF and MF materials for the water-treatment application. From the TEM analysis, the shape and structure of MF materials was investigated. The mechanical strength, pore-size, contact angle and water-flux analysis for the PMF was performed to investigate the possibility of utilizing as a water treatment membrane. From these results, the PMF11 showed the highest value of mechanical strength ($232.7kgf/cm^2$) and the pore-diameter of composite membrane was reduced by introducing the MF materials. In particular, their pore diameter decreased with an increase of iron oxide composition ratio. The water flux value of PMF was improved about 10 to 60% compared with that of neat PVdF nanofiber membranes. From the arsenic removal characterization of prepared MF materials and PMF, it was shown the simultaneous removal characteristics of both As(III) and (V) ions, and the MF01, in particular, showed the highest adsorption-removal rate of 93% As(III) and 68% As(V), respectively. From these results, prepared MF materials and PMF have shown a great potential to be utilized for the fundamental study to improve the functionality of water treatment membrane.

Crab shell, chitin, chitosan을 이용한 수중의 중금속 제거에 관한 연구

  • 신주남;안희경;김동석
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2000.05a
    • /
    • pp.195-200
    • /
    • 2000
  • Chitin과 탈아세틸화된 chitosan은 중금속 제거에 효과적인 생물흡착제로 잘 알려져 있다. 그러나 본 연구의 결과 crab shell에 있어서의 중금속 제거효율이 순수 chitin과 chitosan에서 보다 더 뛰어남을 알 수가 있었다. 납, 카드뮴, 망간이온 제거실험에서 crab shell은 초기 2시간 이내에 모두 제거되었으나, chitin과 chitosan의 흡착 실험에선 14시간이 경과되어도 이들 중금속의 대부분 수용액 내에서 거의 제거되지 않았다. 구리의 경우 염의 형태에 따른 흡착의 영향을 chitosan에선 제거된 량이 Cu($SO_{4})_{2}$ > Cu($NO_{3})_{2}$ > Cu($Cl_{2}$)의 순으로 나타났으나 chitin에선 모두 흡착이 거의 안된 상태로 나타났다. 주사현미경 분석 결과 crab shell의 표면에 납이 축적되어 있는 상태를 확인하였다.

  • PDF

A Study on the removal of Ozone by using Natural Manganese Ore as a catalyst (천연망간광석 촉매를 이용한 오존 제거에 관한 연구)

  • 정규철;이준엽;박태성;홍성창
    • Proceedings of the Korea Air Pollution Research Association Conference
    • /
    • 2002.04a
    • /
    • pp.291-292
    • /
    • 2002
  • 일반적으로 오존(O$_3$)은 친전자성 및 친핵성반응 때문에 탄소-탄소 이중결합을 가진 분자들을 떼어놓을 수 있는 매우 강한 산화능력을 갖고 있는 것으로서 살균, 맛과 냄새의 조절, 색도 제거 등에 이용되어왔다. 그러나, 오존은 대기 중에 미반응상태로 잔류하는 경우에는 광화학 스모그를 발생시키는 주된 요인이 되고 있으며, 강력한 산화력을 지니고 있기 때문에 0.1-l ppm의 범위에서 인체에 노출되면 두통, 목 건조증, 점막손상과 같은 호흡기 질환 등의 원인이 될 뿐만 아니라 악취를 유발하여 불쾌감을 야기한다. (중략)

  • PDF

A Comparative Study on the Removals of 1-Naphthol by Natural Manganese Oxides and Birnessite (천연망간산화물과 버네사이트에 의한 1-Naphthol의 제거 특성 비교)

  • Lee, Doo-Hee;Harn, Yoon-I;Kang, Ki-Hoon;Shin, Hyun-Sang
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.4
    • /
    • pp.278-286
    • /
    • 2009
  • In this study, four natural Mn oxides ($NMO_1-NMO_4$) was characterized using x-ray diffraction, scanning electron microscopy, and their removal efficiency for 1-naphthol (1-NP) in aqueous phase, using batch reactor, was investigated. The results were compared with one another and a synthetic manganese oxide, birnessite. The NMOs have a various Mn minerals including pyrolusite (${\beta}-MnO_2$), cryptomeltane (${\alpha}-MnO_2$) as well as birnessite (${\delta}-MnO_2$) depending on their sources, which results in different removal efficiencies (removals, kinetics) and reaction types (sorption or oxidative-transformation). The comparative study showed that $NMO_1$ (electrolytic Mn oxide) have a higher removal efficiency for 1-NP via oxidative-transformation compared to birnessite. The 1-NP removals by NMOs were followed by pseudo-first order reaction, and the surface area-normalized specific rate constants ($K_{surf},\;L/m^2$ min) determined were in order of $NMO_1(3.31{\times}10^{-3})$>${\delta}-MnO_2(1.48{\times}10^{-3}){\fallingdotseq}NMO_3(1.46{\times}10^{-3})$>$NMO_2(0.83{\times}10^{-3})$>$NMO_4(0.67{\times}10^{-3})$. From the solvent extraction experiments with the Mn oxide precipitates after reaction, it was observed that the oxidative-transformation rates of 1-NP were in order of $NMO_1{\fallingdotseq}{\delta}-MnO_2$>$NMO_3$>$NMO_4{\gg}NMO_2$ and the analysis of HPLC chromatogram and UV-Vis. absorption ratios ($A_{2/4}$, $A_{2/6}$) on the supernatant confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Results from this study proved that natural Mn oxide (except $NMO_2$) used in this experiment can be effectively applied for the removal of naphthols in aqueous phase, and the removal efficiencies are depending on the surface characters of the Mn oxides.