A Comparative Study on the Removals of 1-Naphthol by Natural Manganese Oxides and Birnessite

천연망간산화물과 버네사이트에 의한 1-Naphthol의 제거 특성 비교

  • Lee, Doo-Hee (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Harn, Yoon-I (Department of Environmental Engineering, Seoul National University of Technology) ;
  • Kang, Ki-Hoon (Dealim Industrial Inc.) ;
  • Shin, Hyun-Sang (Department of Environmental Engineering, Seoul National University of Technology)
  • Received : 2009.04.10
  • Accepted : 2009.04.28
  • Published : 2009.04.30

Abstract

In this study, four natural Mn oxides ($NMO_1-NMO_4$) was characterized using x-ray diffraction, scanning electron microscopy, and their removal efficiency for 1-naphthol (1-NP) in aqueous phase, using batch reactor, was investigated. The results were compared with one another and a synthetic manganese oxide, birnessite. The NMOs have a various Mn minerals including pyrolusite (${\beta}-MnO_2$), cryptomeltane (${\alpha}-MnO_2$) as well as birnessite (${\delta}-MnO_2$) depending on their sources, which results in different removal efficiencies (removals, kinetics) and reaction types (sorption or oxidative-transformation). The comparative study showed that $NMO_1$ (electrolytic Mn oxide) have a higher removal efficiency for 1-NP via oxidative-transformation compared to birnessite. The 1-NP removals by NMOs were followed by pseudo-first order reaction, and the surface area-normalized specific rate constants ($K_{surf},\;L/m^2$ min) determined were in order of $NMO_1(3.31{\times}10^{-3})$>${\delta}-MnO_2(1.48{\times}10^{-3}){\fallingdotseq}NMO_3(1.46{\times}10^{-3})$>$NMO_2(0.83{\times}10^{-3})$>$NMO_4(0.67{\times}10^{-3})$. From the solvent extraction experiments with the Mn oxide precipitates after reaction, it was observed that the oxidative-transformation rates of 1-NP were in order of $NMO_1{\fallingdotseq}{\delta}-MnO_2$>$NMO_3$>$NMO_4{\gg}NMO_2$ and the analysis of HPLC chromatogram and UV-Vis. absorption ratios ($A_{2/4}$, $A_{2/6}$) on the supernatant confirmed that the reaction products were oligomers formed by oxidative-coupling reaction. Results from this study proved that natural Mn oxide (except $NMO_2$) used in this experiment can be effectively applied for the removal of naphthols in aqueous phase, and the removal efficiencies are depending on the surface characters of the Mn oxides.

본 연구에서는 망간원석을 포함한 4종의 천연망간산화물($NMO_1\;NMO_4$)을 대상으로 물질특성(결정상, 표면형태)과 1-naphthol (1-NP)에 대한 제거반응 특성을 회분식 실험을 통하여 수행하였고, 그 결과를 버네사이트에서의 결과와 비교 분석하였다. 천연망간산화물은 출처에 따라 버네사이트(${\delta}-MnO_2$)외에도 크립토멜란(${\alpha}-MnO_2$), 연망간석(${\beta}-MnO_2$) 등의 다양한 표면 특성을 동시에 가지고 있었으며, 이러한 표면 특성으로 인해 제거효율(제거율, 반응속도) 및 제거반응(흡착 또는 산화-변환제거)에서 차이를 보였다. 특히, $NMO_1$(전해망간산화물)은 버네사이트에 비교해서도 우수한 1-NP의 산화-변환 제거효율을 보임을 알 수 있었다. 망간산화물에 의한 1-NP의 제거는 모두 유사-일차속도 식을 따랐으며, 각 망간산화물의 비표면적으로 표준화하여 얻은 속도상수($k_{surf},\;L/m^2$ min) 값은 $NMO_1(3.31{\times}10^{-3})$>${\delta}-MnO_2(1.48{\times}10^{-3}){\fallingdotseq}NMO_3(1.46{\times}10^{-3})$>$NMO_2(0.83{\times}10^{-3})$>$NMO_4(0.67{\times}10^{-3})$의 순이었다. 또한, 반응후 침전층에 대한 용매추출실험을 통해 평가한 1-NP의 산화-변환 반응효율은 $NMO_1{\fallingdotseq}{\delta}-MnO_2$>$NMO_3$>$NMO_4{\gg}NMO_2$의 순이었으며, 반응산물은 반응여액(상등액)에 대한 HPLC 크로마토그램, UV-vis. 흡광도비($A_{2/4}$, $A_{2/6}$) 분석을 통해 버네사이트에서와 같이 1-napthol의 산화-결합 반응에 의한 것임을 확인하였다. 이상의 결과로부터 본 실험에 사용한 천연망간산화물($NMO_2$ 제외)은 1-NP의 제거에 효과적으로 적용될 수 있으며, 반응효율은 망간산화물의 출처에 따른 표면특성에 따라 차이가 있음을 확인하였다.

Keywords

References

  1. Shindo, H. and Huang, P. M., “Role of Mn(IV) oxide in abiotic formation of humic substances in the environment,” Nature (London), 298, 363-365(1982) https://doi.org/10.1038/298363a0
  2. McKenzie, R. M., “The synthesis of birnessite, cryptomelane, and some other oxides and hydroxides of manganese,” Miner. Mag., 38, 493-502(1971) https://doi.org/10.1180/minmag.1971.038.296.12
  3. Julien, C. M., Massot, M., and Poinsignon, C., “Lattice vibrations of manganese oxides; Part 1. Periodic structure,” Spectrochim. Acta Part A., 60, 689-700(2004) https://doi.org/10.1016/S1386-1425(03)00279-8
  4. Wang, M. C. and Huang, P. M., “Significance of Mn (IV) oxide in the abiotic ring cleavage of pyrogallol in natural environments,” Sci. Total Environ., 113, 147-157(1992) https://doi.org/10.1016/0048-9697(92)90022-K
  5. Ukrainczyk, L. and McBride, M. B., “Oxidation of phenol in acidic aqueous suspensions of manganese oxides,” Clays Clay Miner., 40, 157-166(1992) https://doi.org/10.1346/CCMN.1992.0400204
  6. Shin, J. Y., Buzgo, C. M., and Cheney, M. A., “Mechanochemical degradation of atrazine adsorbed on four synthetic manganese oxides,” Colloids Surf., A: Physicochem. Eng. Aspects, 172, 113-123(2000) https://doi.org/10.1016/S0927-7757(00)00574-4
  7. Cheney, M. A., Sposito, G., McGrath, A. E., Criddle, R. S., “Abiotic degradation of 2,4-D (dichlorophenoxyacetic acid) on synthetic birnessite: a calorespirometric method,” Colloids Surf. A, 107, 131-140(1996) https://doi.org/10.1016/0927-7757(95)03385-8
  8. Bollag, J. M., Myers, C., Pal, S., and Huang, P. M., “The role of abiotic and biotic catalysts in the transformation of phenol compounds,” In Envirnmental Impact of Soil Components Interactions: Natural and Anthropogenic Organics (P. M. Haung, J. Berthelin, J. M. Boallg, W. B. McGill, A. L. Pake eds.), CRC Press, Boca Raton, FL, pp. 299-310(1995)
  9. Naidja, A., Huang, P. M., and Bollang, J.-M., “Comparison of reation products from the transformation of catechol catalyzed by birnessite or Tyrosinase,” Soil Sci. Soc. Am. J., 62, 188-195(1998) https://doi.org/10.2136/sssaj1998.03615995006200010025x
  10. Shindo, H. and Huang, P. M., “Significance of Mn(IV) oxide in abiotic formation of organic nitrogen complexes in natural Environment,” Nature (London), 308, 57-58(1984) https://doi.org/10.1038/308057a0
  11. Weber, Jr., W. J. and Huang, Q., “Inclusion of persitent organic pollutants in humification processes: direct chemical incorporation of phenanthrene via oxidative coupling,” Environ. Sci. Technol., 37, 4221-4227(2003) https://doi.org/10.1021/es030330u
  12. Kang, K.-H., Dec, J., Park, H., and Bollag, J.-M., “Effect of phenolic mediators and humic acid on cyprodinil transformation in the presence of birnessite,” Water Res., 38(11), 2737-2745(2004) https://doi.org/10.1016/j.watres.2004.03.018
  13. 전선영, 백제우, 신원식, 고석오, “천연망간산화물에 의한 클로로페놀의 산화결합생성물을 매개로 한 다환방향 족화합물(PAH) 오염물의 고정화 효과,” 한국지하수토양환경학회지, 10(5), 45-51(2005)
  14. 임동민, 이두희, 강기훈, 신현상, “망간산화물에 의한 1-Naphthol의 산화-결합 반응에 따른 반응산물 연구,” 대한환경공학회지, 29(9), 989-996(2007)
  15. Stone, A. T. and Mogan, J. J., 'Reduction and dissolution of Mn(III) and Mn(IV) oxides by organics. 2. Survey of the reactivity of organics,' Environ. Sci. Technol., 18, 617-624(1984) https://doi.org/10.1021/es00126a010
  16. 임동민, 강기훈, 신현상, “망간산화물을 이용한 1-Naphthol의 산화-제거 연구,” 대한환경공학회지, 28(5), 535-542 (2006)
  17. Shin, J. Y. and Cheney, M. A., “Abiotic transformation of atrazine in aqueous suspension of four synthetic manganese oxides,” Colloids Surf., A: Physicochem. Eng. Aspects, 242, 85-92(2004) https://doi.org/10.1016/j.colsurfa.2004.04.061
  18. Ouvrard, S., Donato, P, Simonnot, M. O., Ghanbaja, B. J., Alnot, M., Duval, Y. B., Lhote, F., Barres, O., and Sardin, M., “Natural manganese oxide: Combined analytical approach for solid characterization and arsenic retention,” Geochim. Cosmochim. Acta., 69(11), 2715-2724(2005) https://doi.org/10.1016/j.gca.2004.12.023
  19. Shindo, H. and Huang, P. M., “Catalytic effect of manganese(IV), iron(III), Al, and Si oxides on the formation of phenolic polymers,” Soil Sci. Soc. Am. J., 48, 927-934(1984b) https://doi.org/10.2136/sssaj1984.03615995004800040045x
  20. McBride, M. B., “Adsorption and oxidation of phenolic compounds by iron an manganese oxides,”il Sci. Soc. Am. J., 51, 1466-1472(1987) https://doi.org/10.2136/sssaj1987.03615995005100060012x
  21. Xu, F., Koch, D. E., Kong, I. C., Hunter, R. P., and bhandari, A., “Peroxidase-mediated oxidative coupling of I-naphthol: Characterization of polymerization products,” Water Res., 39, 2358-2368(2005) https://doi.org/10.1016/j.watres.2005.04.010
  22. Majcher, E. H., Chorover, J., Bollag, J.-M., and Huang, P. M., “Evolution of CO2 during birnessite-induced oxidation of 14C-labeled catechol,” Soil Sci. Soc. Am. J., 64, 157-163(2000) https://doi.org/10.2136/sssaj2000.641157x
  23. Karthikeyan, K. G. and Chorover, J., “Effects of solution chemistry on the oxidative transformation of 1-naphthol and its complexation with humic acid,” Environ. Sci. Technol., 34, 2939-2946(2000) https://doi.org/10.1021/es991445u
  24. Silvertein, R. M. and Webster, F. X., Spectrometric Identification of Organic Compounds, 6th Ed., Jhon Wiley & Sons(1997)
  25. Kang, K. H., Lee, D. H., and Shin, H. S., “Reaction kinetics and transformation products of 1-naphthol by Mn oxide-mediated oxidative-coupling reaction,” J. Hazard. Mat., 165, 540-547(2009) https://doi.org/10.1016/j.jhazmat.2008.10.027
  26. Stevenson, F. J., Humus Chemistry, John Wiley and Sons, New York, 303-324(1994)