• Title/Summary/Keyword: 말뚝지지력

Search Result 523, Processing Time 0.027 seconds

Analysis Method Considering the Ground Reinforcement Effect of Micropile by Field Loading Tests (재하시험을 통한 소구경말뚝의 지반보강효과를 고려한 해석법)

  • Hong, Seok-Woo
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.1
    • /
    • pp.89-99
    • /
    • 2009
  • Compared to standard piling methods, micropile construction can be used in downtown areas since it generates less vibration and noise. Since it only causes less soil disturbance, it is commonly used as reinforcement to existing structures. In this study, a field wherein the bearing capacity and settlement of soil can not support the weight of the superstructure was selected and micropiles were implemented instead of ordinary piles. The deformation modulus of the micropile reinforced ground was determined and was directly reflected in the design. Loading testing was used to check whether or not the allowable bearing capacity satisfies the condition of the designed bearing capacity. The computed deformation modulus based from the test was used in the numerical analysis of soil to investigate the stability of the foundation and analysis method. And a method for controlling the bearing capacity and settlement was recommended.

Bearing Capacity of SDA Augered Piles in Various Grounds Depending on Water-Cement Ratio of Cement Milk (시멘트밀크 배합비에 따른 다양한 지반 내 SDA매입말뚝의 연직지지력)

  • Hong, Won-Pyo;Lee, Jae-Ho;Chai, Soo-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.5
    • /
    • pp.37-54
    • /
    • 2008
  • The standard construction manual of the SDA (Separated Doughnut Auger) piling method was proposed so that the resisting capacity of the augered piles could work effectively. 438 dynamic pile load tests were performed on 379 test piles, which were installed at 36 sites in Korea by the SDA piling method with application of various water-cement ratio of cement milks. The dynamic pile load test results showed that the bearing capacity of the SDA augered piles depended on the water-cement ratio of cement milks. And couple of the formulas were presented according to water-cement ratio and various grounds to estimate quantitatively both the unit end bearing and the unit frictional capacity of the SDA augered piles. It was also considered that the water-cement ratio of cement milks exerts an influence on the bearing capacity of the SDA augered piles. The presented formulas were compared with the existing formulas, which were presented by several standard design codes to design the augered piles.

An Experimental Study on the MSG Reinforcement of Steel Pipe Pile Installed by PRD (MSG공법에 의한 PRD강관말뚝 보강에 관한 사례 연구)

  • Chun, Byungsik;Kang, Heejin;Kong, Jinyoung
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.5-12
    • /
    • 2007
  • Mudstone has characteristics that it has high enough strength and stiffness in a dry condition, but the strength and stiffness decrease in a wet condition with groundwater infiltration. The sliding of cut slope frequently encountered in Pohang area has been reported due to the rapid reduction of shear strength in mudstone after being exposed to the air. The study in this paper shows that mudstone having enough strength in a boring stage has lost the strength after installing PRD (percussion rotary drill) steel pipe pile inducing an insufficient bearing capacity. Field test has been performed to investigate the most favorable method for increasing a pile bearing capacity in mudstone with various methods such as MSG (Micro Silica Grouting) around the tip and side of a pile, the perimeter grouting combined with Micro pile reinforcement, and concrete filling after tip reinforcing grouting. MSG has been turned out to be the most favorable method for increasing a pile bearing capacity in mudstone, confirmed by the static load test.

  • PDF

Evaluation of Plugging Effect of Open-Ended Model Pipe Pile (개단 강관말뚝의 폐색효과에 대한 모형실험 연구)

  • Kim, Myoung Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.3
    • /
    • pp.175-181
    • /
    • 1987
  • Plugging effect of open-ended pipe piles is known to have a close relationship with the ratio of an embedment depth to a pile diameter, i.e., the relative embedment ratio. To evaluate this relationship in the concrete, load tests are performed on the open and the close ended model piles varying the relative embedment ratio as well as the relative density of the model test ground. Cross-shaped hollow plates are attached at the open pile ends to reduce the effective pile diameters, on which load tests are also performed. As a result, it is confirmed that higher plugging effect may be obtained in the denser ground at lower relative embedment. However, 100% plugging effect can be obtained at the relative embedment ratio of 25 or bigger regardless of the density of the ground. Increment of the plugging effect by introducing the cross-shaped attachment can hardly be achieved.

  • PDF

Bearing Capacity Characteristics of SIP Piles (SIP 공법의 지지력 특성에 관한 연구)

  • 박종배;김정수;정형식
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.51-60
    • /
    • 2003
  • As piling works in urban area are increasing, SIP which has low noise & vibration piling method takes the place of driven pile which has good bearing charateristics and is economical. Although SIP has been used far more than 15 years and it's use is increasing year by year, accurate analysis of bearing mechanism of SIP is not enough. So the design of SIP is much more conservative than driven pile. This paper is aimed at analysing the bearing charateristics of 103 SIPs constructed in Korea to give rational design criteria. Research result shows that bearing capacity of SIP is 40% lower than that of driven pile and conservative Meyerhof(20$\bar{N}_b'A_b$) method produced closer result to load test results than any other design method. And this result shows that in order to use optimised design criteria for the economical SIP design, quality control criteria must be settled down to produce high bearing capacity.

Evaluation of Axial Bearing Capacity of Waveform Micropile by Centrifuge Test (원심모형실험을 통한 파형 마이크로파일의 연직 지지력 평가)

  • Jang, Young-Eun;Han, Jin-Tae;Kim, Jae-Hyun;Park, Heon-Joon;Kim, Sang-Hwan
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.8
    • /
    • pp.39-49
    • /
    • 2015
  • In this study, a series of centrifuge tests were performed in order to observe the bearing capacity of waveform micropile, a new concept of micropile that uses a modified jet grouting process. A total of six models were considered, conventional micropile, jet grouted pile, and four different shapes of waveform micropiles. The test results indicated that the waveform micropile effectively contributes to the increase of the bearing capacity compared to the micropile without the shear keys. Among the waveform micropiles, the model that has a relatively small space between the shear keys showed the most significant improvement of load capacity. Additionally, the ultimate load capacities of all piles were compared using well-known estimation method. As a result, P-S curve method and total settlement method with 25.4 mm were considered suitable to account ultimate load for the waveform micropile.

Comparison of Bearing Capacity between SCP and GCP by Unit Cell Model Tests (단일말뚝 형태의 모형시험을 통한 SCP와 GCP의 극한지지력 비교)

  • 김병일;이승원;김범상;유완규
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.41-48
    • /
    • 2004
  • Several centrifuge modelling tests were performed to compare sand compaction pile (SCP) with gravel compaction pile (GCP) at the point of bearing capacity. SCP and GCP were installed as 30, 40, 50, 60, 70% of replacement ratio in cylindrical model tank (diameter = 20 cm, height = 40 cm), and the loading tests were carried out to analyze the bearing characteristics of soft clay ground reinforced by SCP and GCP. As a result of loading tests, the bearing capacities of soft grounds reinforced by SCP and GCP increase with increasing replacement ratio of pile, and a GCP reinforced ground has larger bearing capacity than that of a SCP reinforced ground. Several proposed bearing capacity equations for ground reinforced by SCP or GCP were compared with loading test results.

A Study on the Behaviour of Prebored and Precast Steel Pipe Piles from Full-Scale Field Tests and Class-A and C1 Type Numerical Analyses (현장시험과 Class-A 및 C1 type 수치해석을 통한 강관매입말뚝의 거동에 대한 연구)

  • Kim, Sung-Hee;Jung, Gyoung-Ja;Jeong, Sang-Seom;Jeon, Young-Jin;Kim, Jeong-Sub;Lee, Cheol-Ju
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.7
    • /
    • pp.37-47
    • /
    • 2017
  • In this study, a series of full-scale field tests on prebored and precast steel pipe piles and the corresponding numerical analysis have been conducted in order to study the characteristics of pile load-settlement relations and shear stress transfer at the pile-soil interface. Dynamic pile load tests (EOID and restrike) have been performed on the piles and the estimated design pile loads from EOID and restrike tests were analysed. Class-A type numerical analyses conducted prior to the pile loading tests were 56~105%, 65~121% and 38~142% respectively of those obtained from static load tests. In addition, design loads estimated from the restrike tests indicate increases of 12~60% compared to those estimated in the EOID tests. The EOID tests show large end bearing capacity while the restrike tests demonstrate increased skin friction. When impact energy is insufficient during the restrike tests, the end bearing capacity may be underestimated. It has been found that total pile capacity would be reasonably estimated if skin friction from the restrike tests and end bearing capacity from the EOID are combined. The load-settlement relation measured from the static pile load tests and estimated from the numerical modelling is in general agreement until yielding occurs, after which results from the numerical analyses substantially deviated away from those obtained from the static load tests. The measured pile behaviour from the static load tests shows somewhat similar behaviour of perfectly-elastic plastic materials after yielding with a small increase in the pile load, while the numerical analyses demonstrates a gradual increase in the pile load associated with strain hardening approaching ultimate pile load. It has been discussed that the load-settlement relation mainly depends upon the stiffness of the ground, whilst the shear transfer mechanism depends on shear strength parameters.

Study of pile foundation using spiral pile (나선형 파일을 이용한 말뚝기초에 관한 연구)

  • Yoon, Young-Hwan;Kang, Si-On;Cho, Young-Dong;Kim, Sang-Hwan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.3
    • /
    • pp.567-575
    • /
    • 2018
  • This study examined a pile foundation using a spiral pile. To maintain the structural safely, a foundation for connecting the ground and the ground structure is needed. On the other hand, noise and vibration, etc. cause problems when constructing a foundation on adjacent structures or urban areas. A study of the spiral foundation of a new shape with low vibration and noise was carried out to solve these problems. A study of pile foundations was carried out on a scaled model test and compared with the results of Meyerhof's bearing capacity theory. The scaled model test results showed that the bearing capacity increases with increasing pitch angle and length of the spiral pile. To verify the measured bearing capacity in a test with theoretical results, the bearing capacity of the actual spiral pile and scaled model pile were examined and compared. The ultimate bearing capacity of the spiral pile can be increased by increasing the foundation length and pitch angle. This study complements existing foundation construction problems and contributes to a better effect and safety.

Evaluation of Lateral Load Capacity of Drilled Shafts with Pile Shape and Soil Conditions (말뚝형태 및 지반조건에 따른 현장타설말뚝의 수평지지력 평가)

  • Lee, Jun-Hwan;Paik, Kyu-Ho;Kim, Dae-Hong;Hwang, Sung-Wuk;Kim, Min-Kee
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.2
    • /
    • pp.61-69
    • /
    • 2007
  • In this study, experimental analysis was performed about lateral load capacity and behavior of laterally loaded-bored piles for soil conditions and pile shape, i.e. cylindrical and taper piles. Also, Calibration chamber load tests were performed for cylindrical and taper piles considering the variations of relative densities and restraint stresses. According to the results of chamber tests, it was found that, while both vertical and horizontal stresses affect load-responses and ultimate lateral load capacity of laterally loaded piles, effect of the horizontal stress was larger than that of the vertical stress. Effect of lateral load capacity and behavior was relatively small compared to relative density and stress state of soils surrounding piles, but showed a little difference for soil conditions. From comparison between predicted and measured lateral load capacity, it was observed that predicted results differ significantly from measured results. This is mainly due to the fact that the effect of horizontal stress is not considered in the conventional prediction methods.