• Title/Summary/Keyword: 말단질량

Search Result 20, Processing Time 0.031 seconds

Fault Detection Method of Pipe-type Cantilever Beam with a Tip Mass (말단질량을 갖는 원형강관 캔틸레버 보의 결함탐지기법)

  • Lee, Jong Won
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.25 no.11
    • /
    • pp.764-770
    • /
    • 2015
  • A crack identification method using an equivalent bending stiffness and natural frequency for cracked beam is presented. Modal properties of cantilever beam with a tip mass is identified by applying the boundary conditions to a general solution. An equivalent bending stiffness for cracked beam based on an energy method is used to identify natural frequencies of cantilever thin-walled pipe with a tip mass, which has a through-the-thickness crack, subjected to bending. The identified natural frequencies of the cracked beam are used in constructing training patterns of neural networks. Then crack location and size are identified using a committee of the neural networks. Crack detection was carried out for an example beam using the proposed method, and the identified crack locations and sizes agree reasonably well with the exact values.

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Kim, H.J.;Ryu, B.J.;Jung, S.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.6
    • /
    • pp.569-574
    • /
    • 2009
  • The paper presents the influences of the external damping and the tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached mechanical parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

Effect of External Damping and Tip Mass on Dynamic Stability of Pipes Conveying Fluid (유동유체에 의한 파이프의 동적안정성에 미치는 외부감쇠와 말단질량의 영향)

  • Ryu, B.J.;Jung, S.H.;Shin, G.B.;Han, H.H.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.11a
    • /
    • pp.465-468
    • /
    • 2005
  • The paper deals with the influences of external damping and tip mass on dynamic stability of a vertical cantilevered pipe conveying fluid. In general, real pipe systems may have some valves and attached parts, which can be regarded as attached lumped masses and support-dampers. The support-dampers can be assumed as viscous dampers. The equations of motion are derived by energy expressions using extended Hamilton's principle, and some numerical results using Galerkin's method are presented. Critical flow velocities and stability maps of the pipe with external dampers and tip mass are obtained for various tip mass ratios, external damping coefficients and positions of the viscous dampers.

  • PDF

Influence of Spring Constant at Fixed End on Stability of Beck's Column with Tip Mass (固定端 의 스프링 상수 가 末端質量을 가진 Beck′s Column 의 安定性 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.5
    • /
    • pp.606-612
    • /
    • 1985
  • On the stability of the Beck's column with a tip mass, the influence of the characteristics of the springs at the fixed end of the column are studied. The equations of motion and boundary conditions of this system are established by using the Hamiton's principle. On the evaluation of the stability of the column, t he effect of the shear deformation and rotatory inertial is considered in calculation. For the maintenance of the stability of the column, it is proved that the constant of the translational spring at the fixed end must be very large while th magnitude of the constant of the rotational spring at the fixed end has no effect. When the constants of the springs at the fixed end are small, it is also proved that the influence of the moment of inertial of the tip mass on the stability of the column are decreased and for the translational spring the degree of the decrease is more and more. Therefore it is found that the characteristics of the springs at the fixed end are very effective elements for the stability of the column when the columns subjected to a compressive follower force are designed.

A Study on the Characteristics of Natural Frequency and Impedance of Elastically Restrained Cracked Beam with a Tip Mass (말단질량을 갖는 탄성지지 균열보의 고유주파수와 임피던스 특성 연구)

  • Lee, Jong-Won
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.11
    • /
    • pp.317-325
    • /
    • 2020
  • The development of a technique that can monitor the cracks, which is one of the typical types of damage, is necessary to secure the structural safety of elastically restrained cantilever-type beams with a tip mass that is used widely in infrastructure. Impedance techniques have been actively researched to detect cracks, and the cracks were estimated mainly by experimentally investigating the relationship between the crack and impedance signal. This study examined the correlation between the change in the impedance signals due to the crack, and the natural frequency obtained analytically. After updating the analysis model for the intact beam, the impedance signal was measured while gradually inflicting cracks in the cantilever-type beam, and the damage index was obtained. The results were compared with the natural frequencies calculated from the updated analysis model to investigate the correlation. A close correlation was observed between the experimentally obtained impedance damage index, and the analytically calculated natural frequency. Using this correlation, the structural characteristics could be evaluated more accurately from the damage estimation results, and the behavior of the structure could be predicted effectively using the analysis model.

Eigenvalue Branches and Flutter Modes of a Cantilevered Pipe Conveying Fluid and Having a Tip Mass (말단질량을 갖는 외팔 송수관의 고유치 분기와 플러터 모드)

  • Ryu, B.J.;Ryu, S.U.;Lee, J.W.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.13 no.12
    • /
    • pp.956-964
    • /
    • 2003
  • The paper describes the relationship between the eigenvalue branches and the corresponding flutter modes of cantilevered pipes with a tip mass conveying fluid. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. The flutter configurations of the pipes at the critical flow velocities are drawn graphically at every twelfth period to define the order of quasi-mode of flutter configuration. The critical mass ratios, at which the transference of the eigenvalue branches related to flutter takes place. are definitely determined. Also, in the case of haying internal damping, the critical tip mass ratios, at which the consistency between eigenvalue braches and quasi-modes occurs. are thoroughly obtained.

Tandem Mass Spectrometry of N-linked Glycans from Human Immunoglobulin G (다중 질량 분석법을 이용한 인체 면역글로불린 G의 N-연결 글라이칸 분석)

  • Joo, Hwang-Soo;Kim, Yun-Gon;Jang, Kyoung-Soon;Kim, Byung-Gee
    • KSBB Journal
    • /
    • v.22 no.4
    • /
    • pp.234-238
    • /
    • 2007
  • We used electrospary ionization ion trap tandem mass spectrometry (ESI-IT tandem MS) to structural elucidation of three different biantennary-type glycans having zero, one, two galactoses (G0, G1, G2). The highest fragment ion in the MS/MS spectra of three glycans was produced by 0,2-ring cleavage of fucose-linked N-acetylglucosamine (GlcNAc) in reducing end. The fragment ions both from precursor ions and 0,2-ring cleaved ions ($^{0.2}An$; n=5 for G0, n=6 for G1 and G2) were not overlapped each other. As results of $MS^n$ analyses, tandem fragmentation trees of each glycans were generated and 2,4-ring cleavages ($^{2.4}A_6$) were occurred in GlcNAc linked to reducing end GlcNAc. This structural elucidation and fragmentation study of N-linked glycans by tandem mass spectrometry can be applied to structural analysis of more complicated glycans.

The Influence of Inertial Moment of Tip Mass on the Stability of Beck's Column (말단질량 의 관성모우멘트 가 Beck's Column 의 안정성 에 미치는 영향)

  • 윤한익;김광식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.8 no.2
    • /
    • pp.119-126
    • /
    • 1984
  • An analysis is presented for the vibration and stability of Beck's column carring a tip mass at its free and subjected there to a follower compressive force by using variational approach. The influence of transverse shear deformation and rotatory inertial of the mass of the column upon the critical flutter load and frequency is considered, and Timoshenko's shear coefficient K' is calculated by Cowper's formulae. It is, moreover, worth noticing that the influence of inertial moment of tip mass upon the flutter load and frequency is investigated. The centroid of a tip mass is offset from the free end of the beam and located along its extended axis of the two cases, one of which has a tip mass increasing as .xi., the tip mass offset parameter, is augmented, the other has a tip mass constant but the inertial moment is variable according to a magnitude of .eta., the tip mass offset parament. This study reveals that the effects of inertial moment of a tip mass and larger value of P are specially remarkable even a tip mass is a same.

The Effect of a Tip Mass on Dynamic Stability of Pipes on Elastic Foundations (탄성기초 위에 놓인 파이프의 동적 안정성에 미치는 말단 질량의 영향)

  • 류봉조;김건희
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.11
    • /
    • pp.1115-1122
    • /
    • 2004
  • The paper discussed the effect of a tip mass on the stability of pipes on elastic foundations. Governing equations of motion are derived by extended Hamilton's principle, and the numerical scheme using finite element method is applied to obtain the discretized equations. With or without internal damping, the critical flow velocities of the pipes are investigated according to the variation of elastic foundation parameters and tip mass ratios. Also. the relationship between the eigenvalue branches and the corresponding flutter modes of the cantilevered pipes with a tip mass on the elastic foundations is fully investigated.

Influence of Elastic Restraints and Tip Mass at Free End on stability of Leipholz Column (Leipholz 기둥의 안정성에 미치는 자유단의 탄성구속과 말단질량의 영향)

  • 윤한익;박일주;진종태;김영수
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1996.04a
    • /
    • pp.309-315
    • /
    • 1996
  • An analysis is presented on the stability of elastic cantilever column subjected to uniformly distributed follower forces as to the influence of the elastic restraints and a tip mass at the free end. The elastic restraints are formed by both the translational and the rotatory springs. For this purpose, the governing equations and boundary conditions are derived by using Hamilton's principle, and the critical flutter loads and frequencies are obtained from the numerical evaluation of the eigenvalue functions of this elastic system. The added tip mass increases as a whole the critical flutter load in this system, but the presence of its moment of inertia of mass has a destabilizing effect. The existence of the translational and rotatory spring at the free end increases the critical flutter load of the elastic cantilever column. Nevertheless their effects on the critical flutter load are not uniform because of their coupling. The translational spring restraining the end of cantilever column decreases the critical flutter load by coupling with a large value of tip mass, while by coupling with the moment of inertia of tip mass its effect on the critical flutter load is contrary. The rotatory spring restraining the free end of cantilever column increases the critical flutter load by coupling with the tip mass, but decreases it by coupling with the moment of inertia of tip mass.

  • PDF