• Title/Summary/Keyword: 막전극집합체

Search Result 4, Processing Time 0.029 seconds

Generated Electromotive Force of MIM Element for Electrical and Electronics Industrial using LB Insulating Thin Film (LB 절연박막을 사용한 전기전자산업용 MIM소자의 발생기전력)

  • ;;Taro Hino
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.7 no.3
    • /
    • pp.34-40
    • /
    • 1993
  • 전기전자산업에 유기분자집합체에 대한 전자 device적 기능을 갖게 하는 초전막형성 기술의 하나로서 LB막이 이용되게 된다. 10여년전에 만들어 대기중에 방치되었던 Langmuir Blodgett(LB) 초전막 시료에 대해서 MIM구조소자에 전하가 발생하는 특성을 검토하였다.그 결과 LB막이 무극성일 때는 상하부전극을 동일 금속으로 하면 전압이 발생하지 않고, 서로 다른 금속전극으로 할 때는 전압이 발생하였는데 양전극금속의 일함수값의 차가 클수록 발생전압이 높았고 LB막이 유극성일때는 동일 전극이라도 전압이 발생하였다.따라서 LB초전막의 MIM 소자에서 발생하는 전하는 단순한 화학작용에 의한 것이 아니고양전극 금속의 일함수와 극성에 관계가 있다고 생각된다.

  • PDF

Molecular Dynamics Simulations on Catalyst Layers of Polymer Electrolyte Membrane Fuel Cell (고분자 전해질막 연료전지 전극층에서의 분자동역학 연구)

  • Kang, Haisu;Kwon, Sung Hyun;Lee, Seung Geol
    • Prospectives of Industrial Chemistry
    • /
    • v.24 no.3
    • /
    • pp.14-27
    • /
    • 2021
  • 수소 에너지는 환경 문제를 최소화하고 고갈되는 화석연료를 대체할 수 있는 에너지원으로 각광을 받고 있다. 수소연료전지는 이러한 수소를 에너지원으로 사용하고 수소를 전기에너지로 전환하여 그 부산물로 물을 만드는 대표적인 친환경 전기화학 장치이다. 고분자 전해질막 연료전지는 수소이온교환 특성을 갖는 고분자막을 전해질로 사용하는 연료전지로 막전극집합체의 전극층은 촉매가 포함된 고분자 전해질막 연료전지의 주요 요소 중의 하나이다. 소재개발 측면에서 고분자 전해질막 연료전지 전극층 핵심 소재의 물성 발현 원리 등을 이해하고 최적화된 소재 설계를 위해서는 원자레벨에서의 소재 설계 접근법이 필요하다. 따라서 실험적인 연구가 어려운 부분과 원자단위에서의 물질 현상에 대한 이해 그리고 연구 개발의 효율성 증진을 위해 전산재료과학(computational materials science) 기술이 광범위하게 활용될 수 있다. 본 기고문에서는 고분자 전해질막 연료전지에서의 전극층 소재에 대한 분자동역학 기반의 전산모사 활용과 연구동향에 대하여 소개하고자 한다.

Topology Optimization for End Plate of Fuel Cell Stack (연료전지스택 바깥판의 위상최적설계)

  • Choi, Woo-Seok;Oh, Sung-Jin;Kim, Sung-Jong;Hong, Byung-Sun
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.456-461
    • /
    • 2003
  • A fuel cell is an electrochemical device in which the energy of a chemical reaction is converted directly into electricity. By combining hydrogen fuel with oxygen from air, electricity is formed, without combustion of any form. Water and heat are the only by-products when hydrogen is used as the fuel source. Fuel cell stack consists of multi-layered unit cells. A unit cell consists of MEA and bipolar plates. The end plate of fuel cell stack should give a uniform distributed pressure to multi unit cell layers so as to reduce the contact resistance and to prevent the leakage of reactant gases and the damage of multi layer components. The current end plate is redundantly large and heavy. It makes the power per unit volume reduced. Topology optimization of end plate is conducted for mass reduction and enhancement of bending rigidity. The evaluation of the current design and the recommendation for the future design is remarked.

  • PDF

The Development of Cylinder Shaped Air-breathing PEMFC (원통형 자연대류 방식 PEMFC 개발)

  • Lee, Kang-In;Lee, Se-Won;Park, Min-Soo;Chu, Chong-Nam
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.2
    • /
    • pp.125-132
    • /
    • 2009
  • Cylinder shaped air-breathing PEMFC has been developed to have small volume, low contact resistance and better air accessibility to the open cathode. This cylinder shaped design consists of an anode cylinder with helical flow channel and a cathode current collector with slits. The pressure distribution measurement according to the shapes was performed. The test result indicated that cylinder shaped fuel cell has better pressure distribution compared with the planar shaped fuel cell. The better pressure distribution was connected to the higher performance. The maximum power density of cylinder shaped fuel cell was about 20% higher than the planar shaped fuel cell. The maximum power density of the developed cylinder shaped air-breathing PEMFC with dry hydrogen was $220\;mW/cm^2$ and with humidified hydrogen was $293\;mW/cm^2$.