Molecular Dynamics Simulations on Catalyst Layers of Polymer Electrolyte Membrane Fuel Cell

고분자 전해질막 연료전지 전극층에서의 분자동역학 연구

  • Kang, Haisu (School of Chemcial Engineering, Pusan National University) ;
  • Kwon, Sung Hyun (School of Chemcial Engineering, Pusan National University) ;
  • Lee, Seung Geol (School of Chemcial Engineering, Pusan National University)
  • 강혜수 (부산대학교 응용화학공학부) ;
  • 권성현 (부산대학교 응용화학공학부) ;
  • 이승걸 (부산대학교 응용화학공학부)
  • Published : 2021.06.30

Abstract

수소 에너지는 환경 문제를 최소화하고 고갈되는 화석연료를 대체할 수 있는 에너지원으로 각광을 받고 있다. 수소연료전지는 이러한 수소를 에너지원으로 사용하고 수소를 전기에너지로 전환하여 그 부산물로 물을 만드는 대표적인 친환경 전기화학 장치이다. 고분자 전해질막 연료전지는 수소이온교환 특성을 갖는 고분자막을 전해질로 사용하는 연료전지로 막전극집합체의 전극층은 촉매가 포함된 고분자 전해질막 연료전지의 주요 요소 중의 하나이다. 소재개발 측면에서 고분자 전해질막 연료전지 전극층 핵심 소재의 물성 발현 원리 등을 이해하고 최적화된 소재 설계를 위해서는 원자레벨에서의 소재 설계 접근법이 필요하다. 따라서 실험적인 연구가 어려운 부분과 원자단위에서의 물질 현상에 대한 이해 그리고 연구 개발의 효율성 증진을 위해 전산재료과학(computational materials science) 기술이 광범위하게 활용될 수 있다. 본 기고문에서는 고분자 전해질막 연료전지에서의 전극층 소재에 대한 분자동역학 기반의 전산모사 활용과 연구동향에 대하여 소개하고자 한다.

Keywords

Acknowledgement

이 논문은 정부(과학기술정보통신부)의 재원으로 한국연구재단(기후변화대응 기초원천기술개발 과제)의 지원을 받아 작성되었음(NRF-2020M1A-2A2080807).

References

  1. A. B. Stambouli, Fuel cells: The expectations for an environmental-friendly and sustainable source of energy, Renew. Sustain. Energy Rev., 15, 4507-4520 (2011). https://doi.org/10.1016/j.rser.2011.07.100
  2. B. C. H. Steele and A. Heinzel, Materials for fuel-cell technologies, Nature, 414, 345-352 (2001). https://doi.org/10.1038/35104620
  3. J. H. Wee, Applications of proton exchange membrane fuel cell systems, Renew. Sustain. Energy Rev., 11, 1720-1738 (2007). https://doi.org/10.1016/j.rser.2006.01.005
  4. S. J. Peighambardoust, S. Rowshanzamir, and M. Amjadi, Review of the proton exchange membranes for fuel cell applications, Int. J. Hydrog. Energy, 35, 9349-9384 (2010). https://doi.org/10.1016/j.ijhydene.2010.05.017
  5. Y. Wang, K. S. Chen, J. Mishler, S. C. Cho, and X. C. Adroher, A review of polymer electrolyte membrane fuel cells: Technology, applications, and needs on fundamental research, Appl. Energy, 88, 981-1007 (2011). https://doi.org/10.1016/j.apenergy.2010.09.030
  6. M. K. Debe, Electrocatalyst approaches and challenges for automotive fuel cells, Nature, 486, 43-51 (2012). https://doi.org/10.1038/nature11115
  7. A. Kraytsberg and Y. Ein-Eli, Review of advanced materials for proton exchange membrane fuel cells, Energy Fuels, 28, 7303-7330 (2014). https://doi.org/10.1021/ef501977k
  8. J. Sinha, S. Lasher, Y. Yang, and P. Kopf, in Direct hydrogen PEMFC manufacturing cost estimation for automotive applications: Fuel cell tech team review, Office of Energy Efficiency & Renewable Energy, Washington, DC (2008).
  9. P. Mock and S. A. Schmid, Fuel cells for automotive powertrains-A techno-economic assessment, J. Power Sources, 190, 133-140 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.123
  10. B. D. James and J. A. Kalinoski, in Mass production cost estimation for direct H2 PEM fuel cell systems for automotive applications: 2008 Update, Office of Energy Efficiency & Renewable Energy, Washington, DC (2009).
  11. J. Zhang, PEM Fuel Cell Electrocatalysts and Catalyst Layers: Fundamentals and Applications, Springer Science & Business Media (2008).
  12. K. A. Mauritz and R. B. Moore, State of understanding of Nafion, Chem. Rev., 104, 4535-4585 (2004). https://doi.org/10.1021/cr0207123
  13. A. Kusoglu and A. Z. Weber, New insights into perfluorinated sulfonic-acid ionomers, Chem. Rev., 117, 987-1104 (2017). https://doi.org/10.1021/acs.chemrev.6b00159
  14. S. K. Dishari and M. A. Hickner, Confinement and proton transfer in NAFION thin films, Macromolecules, 46, 413-421 (2013). https://doi.org/10.1021/ma3011137
  15. A. Kusoglu, T. J. Dursch, and A. Z. Weber, Nanostructure/swelling relationships of bulk and thin-film PFSA ionomers, Adv. Funct. Mater., 26, 4961-4975 (2016). https://doi.org/10.1002/adfm.201600861
  16. A. Kusoglu, D. Kushner, D. K. Paul, K. Karan, M. A. Hickner, and A. Z. Weber, Impact of substrate and processing on confinement of Nafion thin films, Adv. Funct. Mater., 24, 4763-4774 (2014). https://doi.org/10.1002/adfm.201304311
  17. M. A. Modestino, D. K. Paul, S. Dishari, S. A. Petrina, F. I. Allen, M. A. Hickner, K. Karan, R. A. Segalman, and A. Z. Weber, Self-assembly and transport limitations in confined Nafion films, Macromolecules, 46, 867-873 (2013). https://doi.org/10.1021/ma301999a
  18. R. Jinnouchi, K. Kudo, N. Kitano, and Y. Morimoto, Molecular dynamics simulations on O-2 permeation through nafion ionomer on platinum surface, Electrochim. Acta, 188, 767-776 (2016). https://doi.org/10.1016/j.electacta.2015.12.031
  19. D. I. Kushner, A. Kusoglu, N. J. Podraza, and M. A. Hickner, Substrate-dependent molecular and nanostructural orientation of Nafion thin films, Adv. Funct. Mater., 29, 1902699 (2019). https://doi.org/10.1002/adfm.201902699
  20. V. O. Kollath, Y. Liang, F. D. Mayer, X. Y. Ma, C. Korzeniewski, and K. Karan, Model-based analyses of confined polymer electrolyte Nanothin films experimentally probed by polarized ATR-FTIR spectroscopy, J. Phys. Chem. C, 122, 9578-9585 (2018). https://doi.org/10.1021/acs.jpcc.8b02473
  21. T. J. Zimudzi and M. A. Hickner, Signal enhanced FTIR analysis of alignment in NAFION thin films at SiO2 and Au interfaces, ACS Macro Lett., 5, 83-87 (2016). https://doi.org/10.1021/acsmacrolett.5b00800
  22. Y. Nagao, Proton-conductivity enhancement in polymer thin films, Langmuir, 33, 12547-12558 (2017). https://doi.org/10.1021/acs.langmuir.7b01484
  23. J. A. Dura, V. S. Murthi, M. Hartman, S. K. Satija, and C. F. Majkrzak, Multilamellar interface structures in Nafion, Macromolecules, 42, 4769-4774 (2009). https://doi.org/10.1021/ma802823j
  24. D. L. Wood III, J. Chlistunoff, J. Majewski, and R. L. Borup, Nafion structural phenomena at platinum and carbon interfaces, J. Am. Chem. Soc., 131, 18096-18104 (2009). https://doi.org/10.1021/ja9033928
  25. H. Kang and S. G. Lee, Recent research trend in electrodes of lithium ion battery based on computational materials science approaches, Prospectives of Industrial Chemistry, 23, 42-54 (2020).
  26. S. S. Jang, V. Molinero, T. Cagin, and W. A. Goddard, Nanophase-segregation and transport in Nafion 117 from molecular dynamics simulations: effect of monomeric sequence, J. Phys. Chem. B, 108, 3149-3157 (2004). https://doi.org/10.1021/jp036842c
  27. G. Brunello, S. G. Lee, S. S. Jang, and Y. Qi, A molecular dynamics simulation study of hydrated sulfonated poly(ether ether ketone) for application to polymer electrolyte membrane fuel cells: Effect of water content, J. Renew. Sustain. Energy, 1, 033101 (2009).
  28. G. F. Brunello, W. R. Mateker, S. G. Lee, J. I. Choi, and S. S. Jang, Effect of temperature on structure and water transport of hydrated sulfonated poly(ether ether ketone): A molecular dynamics simulation approach, J. Renew. Sustain. Energy, 3, 043111 (2011).
  29. J. H. Lee, G. Doo, S. H. Kwon, S. Choi, H. T. Kim, and S. G. Lee, Dispersion-solvent control of ionomer aggregation in a polymer electrolyte membrane fuel cell, Sci. Rep., 8, 10739 (2018). https://doi.org/10.1038/s41598-018-28779-y
  30. G. Doo, J. H. Lee, S. Yuk, S. Choi, D. H. Lee, D. W. Lee, H. G. Kim, S. H. Kwon, S. G. Lee, and H. T. Kim, Tuning the ionomer distribution in the fuel cell catalyst layer with scaling the ionomer aggregate size in dispersion, ACS Appl. Mater. Inter., 10, 17835-17841 (2018). https://doi.org/10.1021/acsami.8b01751
  31. S. H. Kwon, H. Kang, J. H. Lee, S. Shim, J. Lee, D. S. Lee, C. M. Kim, and S. G. Lee, Investigating the influence of the side-chain pendants of perfluorosulfonic acid membranes in a PEMFC by molecular dynamics simulations, Mater. Today Commun., 21, 100625 (2019). https://doi.org/10.1016/j.mtcomm.2019.100625
  32. J. H. Lee, G. Doo, S. H. Kwon, H. Kang, S. Choi, S. D. Yim, H. T. Kim, and S. G. Lee, Controlling ionomer film morphology through altering Pt catalyst surface properties for polymer electrolyte membrane fuel cells, ACS Appl. Polym. Mater., 2, 1807-1818 (2020). https://doi.org/10.1021/acsapm.0c00042
  33. G. Doo, S. Yuk, J. H. Lee, S. Choi, D. H. Lee, D. W. Lee, J. Hyun, S. H. Kwon, S. G. Lee, and H. T. Kim, Nano-scale control of the ionomer distribution by molecular masking of the Pt surface in PEMFCs, J. Mater. Chem. A, 8, 13004-13013 (2020). https://doi.org/10.1039/c9ta14002f
  34. S. H. Kwon, H. Kang, Y. J. Sohn, J. Lee, S. Shim, and S. G. Lee, Molecular dynamics simulation study on the effect of perfluorosulfonic acid side chains on oxygen permeation in hydrated ionomers of PEMFCs, Sci. Rep., DOI: 10.1038/s41598-41021-87570-41598 (2021).
  35. H. Kang, S. H. Kwon, R. Lawler, J. H. Lee, G. Doo, H. T. Kim, S. D. Yim, S. S. Jang, and S. G. Lee, Nanostructures of Nafion film at platinum/carbon surface in catalyst layer of PEMFC: Molecular dynamics simulation approach, J. Phys. Chem. C, 124, 21386-21395 (2020). https://doi.org/10.1021/acs.jpcc.0c03651
  36. J. Hyun, G. Doo, S. Yuk, D. H. Lee, D. W. Lee, S. Choi, J. Kwen, H. Kang, R. Tenne, S. G. Lee, and H. T. Kim, Magnetic field-induced through-plane alignment of the proton highway in a proton exchange membrane, ACS Appl. Energy Mater., 3, 4619-4628 (2020). https://doi.org/10.1021/acsaem.0c00289
  37. K. A. Lee, K. R. Yoon, S. H. Kwon, K. J. Lee, S. Jo, J. S. Lee, K. Y. Lee, S. W. Lee, S. G. Lee, and J. Y. Kim, Post-assembly modification of polymeric composite membranes using spin drying for fuel cell applications, J. Mater. Chem. A, 7, 7380-7388 (2019). https://doi.org/10.1039/c8ta10538c
  38. G. F. Brunello, J. H. Lee, S. G. Lee, J. Il Choi, D. Harvey, and S. S. Jang, Interactions of Pt nanoparticles with molecular components in polymer electrolyte membrane fuel cells: Multi-scale modeling approach, RSC Adv., 6, 69670-69676 (2016). https://doi.org/10.1039/C6RA09274H
  39. S. H. Kwon, S. Y. Lee, H. J. Kim, H. T. Kim, and S .G. Lee, Molecular dynamics simulation to reveal effects of binder content on Pt/C catalyst coverage in a high-temperature polymer electrolyte membrane fuel cell, ACS Appl. Nano Mater., 1, 3251-3258 (2018). https://doi.org/10.1021/acsanm.8b00484
  40. S. H. Kwon, S. Y. Lee, H. J. Kim, S. S. Jang, and S. G. Lee, Distribution characteristics of phosphoric acid and PTFE binder on Pt/C surfaces in high-temperature polymer electrolyte membrane fuel cells: Molecular dynamics simulation approach, Int. J. Hydrog. Energy, DOI: 10.1016/j.ijhydene.2021.1001.1218 (2021).