• Title/Summary/Keyword: 마찰입력

Search Result 111, Processing Time 0.022 seconds

구조물의 비선형 거동해석을 위한 지진시간이력의 기준선 조정

  • 신태명;이규만;김인용
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05d
    • /
    • pp.241-246
    • /
    • 1996
  • 지진시 미끄럼 등과 같이 전형적인 비선형거동을 하는 구조물에 대한 동적해석을 수행하는 경우 먼저 입력지진의 가속도 시간이력에 대한 기준선 조정이 필요할 때가 있다. 인공적으로 작성된 지진기록의 경우 때로 가속도 시간이력을 적분하여 속도 및 변위 시간이력을 얻었을 때 증가하는 형태로 나타나 이로 인하여 비선형응답이 비정상적으로 커질 수 있기 때문이다. 본 논문에서는 바닥이 마찰거동을 하는 구조물에 대해 간단히 모델하여 이러한 예를 보였으며 또한 주로 사용되는 기준선 조정방법들의 응답영향을 비교하였다. 그 결과 입력지진의 기준선 조정을 하지 않는 것이 항상 보수적인 결과만을 보여 주지 않는다는 점과 기준선 조정의 방범에도 표준화가 필요하다는 점을 파악할 수 있었다.

  • PDF

Statistical Effective Interval Determination and Reliability Assessment of Input Variables Under Aleatory Uncertainties (물리적 불확실성을 내재한 입력변수의 확률 통계 기반 유효 범위 결정 방법 및 신뢰성 평가)

  • Joo, Minho;Doh, Jaehyeok;Choi, Sukyo;Lee, Jongsoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.11
    • /
    • pp.1099-1108
    • /
    • 2017
  • Data points obtained by conducting repetitive experiments under identical environmental conditions are, theoretically, required to correspond. However, experimental data often display variations due to generated errors or noise resulting from various factors and inherent uncertainties. In this study, an algorithm aiming to determine valid bounds of input variables, representing uncertainties, was developed using probabilistic and statistical methods. Furthermore, a reliability assessment was performed to verify and validate applications of this algorithm using bolt-fastening friction coefficient data in a sample application.

Uncertainty of Measurements in the Analysis of Vehicle Accidents (차량 사고 분석에서 측정의 불확실성)

  • Han, In-Hwan;Park, Seung-Beom
    • Journal of Korean Society of Transportation
    • /
    • v.28 no.3
    • /
    • pp.119-130
    • /
    • 2010
  • Reconstruction analysis of traffic accident is done by analyzing diverse data such as the road, accident traces and damage on the automobile. Most data can be a variable in the process of analysis, and measurement error of the data occurs from the investigator, tool and the given environment. Therefore, accident analysis always has some risks of measurement uncertainty. This research quantify the uncertainty in traffic accident analysis by conducting repetitive measurement experiments for variables with high probability of uncertainly such as length (i.e. geometric structure of the road, tire marks) and coefficient of friction. This paper also suggests an analysis result for the uncertainly of photographic observation of automobile crush measurement. These statistical distributions can help determine appropriate ranges for the input data in order to estimate the accident reconstruction uncertainty.

Tactile Transceiver for Fingertip Motion Recognition and Texture Generation (손끝 움직임 인식과 질감 표현이 가능한 촉각정보 입출력장치)

  • Youn, Sechan;Cho, Young-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.6
    • /
    • pp.545-550
    • /
    • 2013
  • We present a tactile information transceiver using a friction-tunable slider-pad. While previous tactile information devices were focused on either input or output functions, the present device offers lateral position/vertical direction detection and texture expression. In characterizing the tactile input performance, we measured the capacitance change due to the displacement of the slider-pad. The measured difference for a z-axis click was 0.146 nF/$40{\mu}m$ when the x-y axis navigation showed 0.09 nF/$750{\mu}m$ difference. In characterizing the texture expression, we measured the lateral force due to a normal load. We applied a voltage between parallel electrodes to induce electrostatic attraction in DC and AC voltages. We measured the friction under identical fingertip action conditions, and obtained friction in the range of 32-152 mN and lateral vibration in the force range of 128.1 mN at 60 V, 2 Hz. The proposed device can be applied to integrated tactile interface devices for mobile appliances.

Shaking Table Experimental Study on 3-Dimensional Floor Isolation in Main Control Room of Nuclear Power Plant (원전 주제어실 3차원 층 지진격리시스템의 진동대 실험 연구)

  • Lee, Kyung-Jin;Ham, Kyung-Won;Suh, Yong-Pyo;Yoon, Hyun-Do
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.1
    • /
    • pp.57-66
    • /
    • 2008
  • An experimental study was performed to evaluate seismic reduction performance and applicability of 3-dimensional floor isolation system to the main control room of nuclear power plant. A friction pendulum system(FPS) and air spring were designed and fabricated for 3-dimensional floor isolation system. Two kind of the partial experimental model of a main control room attached to the FPS and air spring were tested on the shaking table. The experimental model consisted of a control panel, a $2.5m{\times}2.5m$ access floor, four FPS and air springs. The artificial time histories based on the vertical and horizontal floor response spectrums(OBE, SSE) of the main control room were used as the earthquake input signals in the test. Compared to non-isolated system, the seismic response of experimental models using 3-dimensional floor isolation system were shown considerable seismic reduction performance.

Multi-Source Based Energy Harvesting Architecture for IoT and Wearable System (IoT 및 웨어러블 시스템을 위한 멀티 소스 기반 에너지 수확 구조)

  • Park, Hyun-Moon;Kwon, Jin-San;Kim, Byung-Soo;Kim, Dong-Sun
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.1
    • /
    • pp.225-234
    • /
    • 2019
  • By using the Triboelectric nanogenerators, known as TENG, we can take advantages of high conversion efficiency and continuous power output even with small vibrating energy sources. Nonlinear energy extraction techniques for Triboelectric vibration energy harvesting usually requires synchronized active electronic switches in most electronic interface circuits. This study presents a nonlinear energy harvesting with high energy conversion efficiency to harvest and save energies from human active motions. Moreover, the proposed design can harvest and store energy from sway motions around different directions on a horizontal plane efficiently. Finally, we conducted a comparative analysis of a multi-mode energy storage board developed by a silicon-based piezoelectricity and a transparent TENG cell. As a result, the experiment showed power generation of about 49.2mW/count from theses multi-fully harvesting source with provision of stable energy storages.

Human-Content Interface : A Friction-Based Interface Model for Efficient Interaction with Android App and Web-Based Contents

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.55-62
    • /
    • 2021
  • In this paper, we propose a human-content interface that allows users to quickly and efficiently search data through friction-based scrolling with ROI(Regions of interests). Our approach, conceived from the behavior of finding information or content of interest to users, efficiently calculates ROI for a given content. Based on the kernel developed by conceiving from GMM(Gaussian mixture model), information is searched by moving the screen smoothly and quickly to the location of the information of interest to the user. In this paper, linear interpolation is applied to make one softer inertia, and this is applied to scrolls. As a result, unlike the existing approach in which information is searched according to the user's input, our method can more easily and intuitively find information or content that the user is interested in through friction-based scrolling. For this reason, the user can save search time.

Speed and Torque characteristics of Ultrasonic Motor by Voltage difference control (전압차 제어에 의한 초음파 모터의 속도 및 토오크 특성)

  • 김영동;오금곤
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.10 no.6
    • /
    • pp.88-95
    • /
    • 1996
  • The ultrasonic motor(USM) has good characteristics such as compact size, silent motion, high speed responce, low speed and high torque. The USM is driven by 2-phase AC electricity. The control parameters of USM are voltage, phase, and frequency of input powers, etc. In this paper, a voltage difference control is proposed. The voltage difference control has more advantage than phase difference control. Specially, current and power is lower than that of phase difference control. For this voltage diffrence control, we designed USM controller to adjust volatage and phase using PLSI(Programmable Large Scale Integration).

  • PDF

The Speed Control of a D.C. Motor by the Self Tuning Control Method (자기 조정 제어방식에 의한 직류 전동기의 속도제어)

  • Park, Jeong-Il;Kim, Do-Hyeon;Choe, Gyu-Geun
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.22 no.2
    • /
    • pp.6-12
    • /
    • 1985
  • In this paper, self tuning control algorithm based on least square method is applied to the speed control of D.C. motor using Z-80 microprocessor as control unit. And the performance of algorithm is analyzed when the correlated noises of variance 20 and 80 are applied respectively. The convergence speed is measured and tracking is verified for the step and staircase wave reference input. Also it is shown that self tuning control algorithm is more attractive to the D.C. Totor speed control system regardless of power supply voltage and friction load changes than linear feedback control method which doesn't estimate parameters.

  • PDF

A Numerical Study on the Flow and Heat Transfer Characteristics of Aluminum Pyramidal Truss Core Sandwich (알루미늄 피라미드 트러스 심재 샌드위치의 열유동 특성에 관한 수치해석 연구)

  • Kang, Jong-Su;Kim, Sang-Woo;Lim, Jae-Yong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.3
    • /
    • pp.638-644
    • /
    • 2019
  • In this study, the fluid flow and heat transfer characteristics within sandwich panels are investigated using computational fluid dynamics. Within the sandwich panels having periodic cellular cores, air can freely move inside the core section so that the structure is able to perform multi-functional roles such as simultaneous load bearing and heat dissipation. Thus, there needs to examine the thermal and flow analysis with respect to design variables and various conditions. In this regard, ANSYS Fluent was utilized to explore the flow and heat transfer within the pyramidal truss sandwich structures by varying the truss angle and inlet velocity. Without the entry effect in the first unitcell, the constant rate of pressure and the constant rate of Nusselt number was observed. As a result, it was demonstrated that Nusselt number increases and friction factor decreases as the inlet velocity increases. Moreover, the rate of Nusselt number and friction factor was appreciable in the range of V=1-5m/s due to the transition from laminar to turbulent flow. Regarding the effect of design variable, the variation of truss angle did not significantly influence the characteristics.