• Title/Summary/Keyword: 마찰력 보상

Search Result 49, Processing Time 0.03 seconds

Fuzzy Observer Design for Mobile Robot (이동로봇을 위한 퍼지관측기 설계)

  • Kim, Jin-Hwan;Kim, Sang-Uk;Lee, Young-Gun;Kim, Bo-Youl;Kim, Young-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2003.07e
    • /
    • pp.103-105
    • /
    • 2003
  • 본 논문에서는 이동로봇의 마찰력 보상을 위해 퍼지 외란 관측자를 설계한다. 이동로봇은 주행 바닥면에 따라 주행 특성이 달라질 수 있다. 주행 중 발생하는 마찰력은 비선형적인 특성을 가지므로 이에 검출할 수 있는 퍼지 관측기를 설계하도록 한다. 설계된 퍼지 관측기를 적용함으로써 주행 바닥 면의 상태에 따라 발생하는 마찰력의 영향을 최소화시킴으로써 주행 특성을 효과적으로 개선시킬 수 있다.

  • PDF

Mass Estimated Adaptive Controller for Nonlinear Friction Compensation in Linear Motor System (선형모터 시스템의 비선형 마찰 보상을 위한 질량 추정형 적응 제어기)

  • Lee, Jin-Woo;Sun, Jung-Won;Lee, Young-Jin;Suh, Jin-Ho;Lee, Kwon-Soon
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2558-2560
    • /
    • 2005
  • 본 논문에서는 마찰력과 질량은 수직항력에 의해 관계하고, 시스템 입출력 관계에서도 도출할 수 있음에 착안하여, LuGre 모델을 기반으로 하는 수직항력 관측이 가능한 보상기 적용과 동시에 제어 입력과 시스템 출력 관계를 적응규칙을 통해 질량추정기를 설계하여 제어 입력의 스케일로 사용함으로써 그 성능을 더욱 향상시키고자 하였다.

  • PDF

Design of Adaptive Controller to Compensate Dynamic Friction for a Benchmark Robot (벤치마크 로봇의 동적 마찰 보상을 위한 적응 제어기 설계)

  • Kim, In-Hyuk;Cho, Kyoung-Hoon;Son, Young Ik;Kim, Pil-Jun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.51 no.1
    • /
    • pp.202-208
    • /
    • 2014
  • Friction force on robot systems is highly nonlinear and especially disturbs precise control of the robots at low speed. This paper deals with the dynamic friction compensation problem of a well-known one-link benchmark robot system. We consider the LuGre model because the model can successfully represent dynamic characteristics and various effects of friction phenomenon. The proposed controller is constructed as two parts. An adaptive controller based on dual observers is used to estimate and compensate the dynamic friction. In order to attenuate the friction estimation error and other disturbances, PI observer is additionally designed. Through the computer simulations with the benchmark system, this paper first examines the effects of nonlinear dynamic friction on the control performance of the benchmark robot system. Next, it is shown that the control performance against the dynamic friction is improved by using the proposed controller.

A Combination Study on the Elevation Motion Friction Compensation Parameters in Gas Spring (1) (가스 스프링 Elevation 동작 마찰력 보상 변수 조합 연구 (1))

  • Lee, Jeong-Ick
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.657-666
    • /
    • 2017
  • In this study, factor analysis was performed to reduce the friction in the elevation motion of a stand for a 50-inchtelevision. Pipe type cross-section control was used for accurate positioning control of the piston rod. The pipe type was also compared with a labyrinth-type crosssection for the orifice. The frictional force was then reduced using gas seal lip technology. Specifications were chosen, and a volume compensation experiment was carried out using an apparatus for compensating the volume of the cylinder, which is compressed by the volume of the piston rod. Based on CAE and experimental considerations, the labyrinth-type orifice is preferred for reducing friction. For the gas seal lip technology, outer and inner diameters of ${\Phi}20$ and ${\Phi}8$ for the hollow rod were more appropriate when assuming the weight of a 50-inch television to be 30kgf. The third is that the result of total consideration in stability problem and performance of volume compensation for specification decision and volume compensation experiment is determined the final speculation of hollow rod ?8x?4 and riveting system. The last is that the labyrinth orifice is not founded that of the ${\O}0.4{\sim}0.6$ orifice both tests on 300 mm intervals.

An Observer Design and Compensation of the Friction in an Inverted Pendulum using Adaptive Fuzzy Basis Functions Expansion (적응 법칙 기반의 퍼지 기초 함수를 이용한 도립진자의 마찰력 관측기 설계 및 마찰력 보상)

  • Park, Duck-Gee;Park, Min-Ho;Chwa, Dong-Kyoung;Hong, Suk-Kyo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.4
    • /
    • pp.335-343
    • /
    • 2007
  • This paper deals with the method to estimate the friction in a system. We study a nonlinear friction model to estimate the friction in an inverted pendulum and approximate the friction model using fuzzy basis functions expansion. To demonstrate the friction observer using FBFs, we derive a update rule based on the error term that is formed by the output from a real system and observer output with a friction estimate. And two compensation algorithms to improve the response of an inverted pendulum are proposed. The first method that a observer parameter is updated in on-line and the friction is compensated at the same time. The second method is to compensate the friction with observer parameter estimated priori. The two methods is compared through the experimental results.

A Study On Moment Estimator Using Disturbance Feedforward Compensator And Effective Disturbance Observer (외란 전향 보상기를 이용한 관성 추정기 및 효율적인 외란 관측기에 대한 연구)

  • Cho, Yong-Gyu;Kim, Min-Young;Kim, Joohn-Sheok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07b
    • /
    • pp.976-977
    • /
    • 2006
  • 선형전동기와 같은 선형운동을 하는 기기에서 원형운동을 하는 경우 속도가 0 이되는 부분에서 비선형적인 마찰력이 작용하며 이로 인한 운동괘적의 외곡 현상이 발생한다. 본 연구에서는 이러한 마찰력을 비롯한 모든 외란을 하나의 비선형적인 외란으로 간주하여 실용적으로 사용할 수 있는 간단한 형태의 외란 관측기를 제시한다. 또한 모든 외란 관측기에서 피할수 없는 문제의 하나인 전동기 관성(모멘트)의 변동 문제를 해결하기 위하여 제한적이지만 매우 효과적으로 관성을 추정해낼 수 있는 새로운 방법을 제안한다.

  • PDF

A Study on the Adaptive Friction Compensator Design of a Hydraulic Proportional Position Control System (유압 비례 위치제어시스템의 적응 마찰력 보상기 설계에 관한 연구)

  • 이명호;박형배
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.77-83
    • /
    • 2003
  • This paper deals with a position control problem of a hydraulic proportional position control system using a nonlinear friction compensation control. As nonlinear friction, stiction and coulomb friction forces are considered and modeled as deadzone and external disturbance respectively. In order to compensate this nonlinearities, we designed the controller which is the adaptive friction compensator using discrete time Model Reference Adaptive Control method in this paper. Digital Signal Processing board is employed for data acquisition and manipulation. The experimental results show that response is slow and steady-state error cannot be compensated properly without friction compensation but this compensator is effective to obtain fast response and good steady-state response.

On-line Friction Estimation and Compensation with a Reduced Model (축소 모델을 이용한 마찰력의 온라인 추정 및 보상 기법)

  • Choi, Jae-Il;Yang, Sang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1995.11a
    • /
    • pp.178-181
    • /
    • 1995
  • In this paper, on-line adaptive friction compensation scheme for the precise position control is presented. 2 DOF system with compliance and friction is used for the plant model. In order to reduce the calculation time for the parameter estimation, 1 DOF estimation model is used. The computer simulation and experimental results show the validity of the supposed scheme.

  • PDF

Performance Enhancement of Motion Control Systems Through Friction Identification and Compensation (마찰력 식별과 보상을 통한 운동제어 시스템의 성능 개선)

  • Lee, Ho Seong;Jung, Sowon;Ryu, Seonghyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.6
    • /
    • pp.1-8
    • /
    • 2020
  • This paper proposes a method for measuring friction forces and creating a friction model for a rotary motion control system as well as an autonomous vehicle testbed. The friction forces versus the velocity were measured, and the viscous friction, Coulomb friction, and stiction were identified. With a nominal PID (proportional-integral-derivative) controller, we observed the adverse effects due to friction, such as excessive steady-state errors, oscillations, and limit-cycles. By adding an adequate friction model as part of the augmented nonlinear dynamics of a plant, we were able to conduct a simulation study of a motion control system that well matched experimental results. We have observed that the implementation of a model-based friction compensator improves the overall performance of both motion control systems, i.e., the rotary motion control system and the Altino testbed for autonomous vehicle development. By utilizing a better simulation tool with an embedded friction model, we expect that the overall development time and cost can be reduced.