• Title/Summary/Keyword: 마이크로 히터

Search Result 74, Processing Time 0.041 seconds

An Experimental Study on Bubbles Growth on Microheater (마이크로 히터에서의 기포 생성에 관한 실험적 연구)

  • Ko, Seung-Hyun;Kim, Shin-Kyu;Kim, Ho-Young;Jang, Young-Soo;Lee, Yoon-Pyo
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1909-1914
    • /
    • 2003
  • Bubble growth on microheater has been experimentally investigated in this study. The experiment was performed using platinum micro heaters having dimensions of $100{\times}10{\times}0.2{\mu}m^3$ with constant heat flux. A high speed video camera was used to observe bubble growth at 250 frames per second. Microheater temperature was measured at the rate of 300Hz with a data acquisition system. When heater temperature was $139^{\circ}C$ a bubble was nucleated in the liquid FC-72. The temperature profiles and the high speed camera images were combined to explain heat transfer and bubble growth on microheater.

  • PDF

Bubble Nucleation and Behavior on Square Micro Heaters (사각 마이크로 히터위에서의 기포의 형성 및 거동)

  • Jung, Jung-Yeul;Kwak, Ho-Young
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1464-1469
    • /
    • 2004
  • In this study, micro square heaters having dimensions of $65{\times}65{\mu}m^2$and $100{\times}100{\mu}m^2$ were fabricated and bubble nucleation experiments on the heaters were performed. Bubble nucleation temperature was also measured using a bridge circuit and the photographs of bubble nucleation and subsequent growth were taken by a camera with a flash unit. Measured bubble nucleation temperatures were found to be closer to the superheat limit of working fluid (FC-72). Also quasi-1D analyses for the square heaters were performed. The quasi-1D analysis yielded proper temperature distribution of the square heater at steady state, however failed to predict the temperature rise up to the steady state. Similar time dependent temperature can be obtained with proper value of thermal diffusivity. For the $100{\times}100{\mu}m^2$ square heater, nucleation of several bubbles was observed while only one bubble was observed to be nucleated on $65{\times}65{\mu}m^2$ heater.

  • PDF

Thermal Analysis of Highly Integrated Gas Sensor Array with Advanced Thermal Stability Properties (안정성이 개선된 고집적 가스센서 어레이 열해석)

  • 정완영;임준우;이덕동
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.12
    • /
    • pp.17-23
    • /
    • 2003
  • A sensor array (3${\times}$5$\textrm{mm}^2$ in diaphragm dimension) of 12 sensing clements with different operating temperatures was optimized with respect to thermal operation. This sensor array with single heater on a glass diaphragm over back-etched silicon bulk realizes a novel concept of a sensor array: an array of sensor clements operated at different temperatures can yield more information than single measurement. The proposed micro sensor array could provide well-integrated array structure because it had only single heater at the center of the diaphragm and used the various sensing properties of two kinds of metal oxide layers with various operating temperatures.

Real Time Temperature Distribution Measurement of a Microheater by Using Off-Axis Digital Holography (Off-Axis 디지털홀로그래피를 이용한 마이크로히터의 실시간 온도분포측정)

  • Tserendolgor, D.;Baek, Byung-Joon;Kim, Dae-Suk
    • Journal of the Korean Vacuum Society
    • /
    • v.20 no.2
    • /
    • pp.106-113
    • /
    • 2011
  • We describe a single shot off-axis digital holography based on a Mach-Zehnder interferometic scheme for measuring temperature distribution of a microheater. The proposed scheme has the capability of reconstructing object phase image which is dependent of the temperature distribution in real time. Experimental results shows that there is a moderate linear relationship between the measured phase and temperature in the range of $20^{\circ}C$ to $60^{\circ}C$. We expect that the proposed system can provide a very reliable and fast solution in various surface temperature distribution measurement applications.

NUMERICAL STUDY OF UNSTEADY HEAT TRANSFER ON MICRO HEATER UNDER HALF-CYCLE SINUSOIDAL HEAT LOAD (마이크로히터에서 반주기 정현곡선의 열부하에 의한 비정상 열전달 연구)

  • Kim, M.J.;Lee, H.J.
    • Journal of computational fluids engineering
    • /
    • v.19 no.4
    • /
    • pp.1-7
    • /
    • 2014
  • A numerical study of transient conjugate heat transfer on micro heater in a micro-channel substrate under a sinusoidal heat load was conducted. It was found that the time constant is not affected by the maximum heating magnitude of the sinusoidal heat load. However, the time constant increases with low duration of the sinusoidal heating period and low Reynolds number. Moreover, there is a threshold where a heater temperature do not reach to time constant at low thermal diffusivity, low flow rate, and low pulse duration of the sinusoidal heating. The time constant should be considered for transient convective heat transfer under transient sinusoidal heat load in a micro heat sink.

An Experimental Study on Bubble Growth and Temperature Change on Microheater (마이크로 히터에서의 기포성장과 온도변화에 관한 실험적 연구)

  • Ko, Seung-Hyun;Kim, Ho-Young;Kim, Shin-Kyu;Chang, Young-Soo;Lee, Yoon-Pyo;Kim, Young-Chan
    • Proceedings of the KSME Conference
    • /
    • 2003.11a
    • /
    • pp.1010-1015
    • /
    • 2003
  • Bubble growth on microheater has been experimentally investigated in this study. The experiment was performed using platinum microheaters having dimensions of 300 ${\mu}m$ or 50 ${\mu}m$ in length, 20 ${\mu}m$ or 5 ${\mu}m$ in width, and $0.2{\pm}0.01$ ${\mu}m$ in thickness. A high speed video camera was used to observe bubble growth at 2,000 frames per second. Microheater temperature was measured at the rate of 300 Hz. with a data acquisition system. Bubble nucleation frequency increased with working fluid temperature. Although the slope of temperature drop was similar in all cases, the magnitude of temperature drop was different. The temperature profiles and the high speed camera images were combined to explain temperature drop.

  • PDF

Fabrication method and performance evaluation of components of micro solid propellant thruster (마이크로 고체 추진제 추력기 요소의 가공 방법 및 성능 평가)

  • Lee, Jong-Kwang;Park, Jong-Ik;Kwon, Se-Jin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.225-228
    • /
    • 2007
  • Micro solid propellant thruster is the most feasible for development with current MEMS. Basic components of micro solid propellant thruster are diverging nozzle, micro igniter, combustion chamber, and solid propellant. Micro nozzles and micro chambers were fabricated using photosensitive glass by anisotropic wet etching technique. Micro Pt heaters on glass membrane which ignited solid propellant were developed. Components of thruster were integrated. Successful ignition was observed.

  • PDF

Experimental and Numerical Study of Thermal Properties about various forms of Micro-heater (다양한 형상을 갖는 마이크로 히터의 열특성에 관한 실험 및 전산해석적 연구)

  • Kim, Jin-Woo;Kim, Jae-Choon;Lee, Jun-Yub;Chung, Jin-Taek
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.1957-1962
    • /
    • 2008
  • As a field of MEMS, micro-heater fabricated by Au is being introduced and developed in recent years. Previous studies about thermal properties of various forms of micro-heater were not sufficient. In this work, numerical and experimental analysis of the heat generation and the temperature distribution of micro-heater packages for 8 different geometric cases were studied. We fabricated a micro-heater package with silicon wafer, on which Cr/Au layer was laminated before 8 geometric forms of micro-heater were patterned. In each cases, temperature distribution was measured with IR thermal camera. According to the experimental results, which show a good agreement with the results analyzed by CFD, it was found that at 0.5W, the temperature of micro-heater chip which contained $20000{\mu}m$-long, serpentine shaped micro-heater was elevated to a relatively high temperature of $78^{\circ}C$ Consequently, we proposed a geometry of micro-heater which has effective thermal characteristics.

  • PDF

Chip-on-Glass Process Using the Thin Film Heater Fabricated on Si Chip (Si 칩에 형성된 박막히터를 이용한 Chip-on-Glass 공정)

  • Jung, Boo-Yang;Oh, Tae-Sung
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.14 no.3
    • /
    • pp.57-64
    • /
    • 2007
  • New Chip-on-glass technology to attach an Si chip directly on the glass substrate of LCD panel was studied with local heating method of the Si chip by using thin film heater fabricated on the Si chip. Square-shaped Cu thin film heater with the width of $150\;{\mu}m$, thickness of $0.8\;{\mu}m$, and total length of 12.15 mm was sputter-deposited on the $5\;mm{\times}5\;mm$ Si chip. With applying current of 0.9A for 60 sec to the Cu thin film heater, COG bonding of a Si chip to a glass substrate was successfully accomplished with reflowing the Sn-3.5Ag solder bumps on the Si chip.

  • PDF