• Title/Summary/Keyword: 마이크로 크기

Search Result 1,167, Processing Time 0.024 seconds

Optimization of Electro-Optical Properties of Acrylate-based Polymer-Dispersed Liquid Crystals for use in Transparent Conductive ZITO/Ag/ZITO Multilayer Films (투명 전도성 ZITO/Ag/ZITO 다층막 필름 적용을 위한 아크릴레이트 기반 고분자분산액정의 전기광학적 특성 최적화)

  • Cho, Jung-Dae;Kim, Yang-Bae;Heo, Gi-Seok;Kim, Eun-Mi;Hong, Jin-Who
    • Applied Chemistry for Engineering
    • /
    • v.31 no.3
    • /
    • pp.291-298
    • /
    • 2020
  • ZITO/Ag/ZITO multilayer transparent electrodes at room temperature on glass substrates were prepared using RF/DC magnetron sputtering. Transparent conductive films with a sheet resistance of 9.4 Ω/㎡ and a transmittance of 83.2% at 550 nm were obtained for the multilayer structure comprising ZITO/Ag/ZITO (100/8/42 nm). The sheet resistance and transmittance of ZITO/Ag/ZITO multilayer films meant that they would be highly applicable for use in polymer-dispersed liquid crystal (PDLC)-based smart windows due to the ability to effectively block infrared rays (heat rays) and thereby act as an energy-saving smart glass. Effects of the thickness of the PDLC layer and the intensity of ultraviolet light (UV) on electro-optical properties, photopolymerization kinetics, and morphologies of difunctional urethane acrylate-based PDLC systems were investigated using new transparent conducting electrodes. A PDLC cell photo-cured using UV at an intensity of 2.0 mW/c㎡ with a 15 ㎛-thick PDLC layer showed outstanding off-state opacity, good on-state transmittance, and favorable driving voltage. Also, the PDLC-based smart window optimized in this study formed liquid crystal droplets with a favorable microstructure, having an average size range of 2~5 ㎛ for scattering light efficiently, which could contribute to its superior final performance.

Side-Wall 공정을 이용한 WNx Self-Align Gate MESFET의 제작 및 특성

  • 문재경;김해천;곽명현;임종원;이재진
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 1999.07a
    • /
    • pp.162-162
    • /
    • 1999
  • 초고주파 집적회로의 핵심소자로 각광을 받고 있는 GaAs MESFET(MEtal-emiconductor)은 게이트 형성 공정이 가장 중요하며, WNx 내화금속을 이용한 planar 게이트 구조의 경우 임계전압(Vth:threshold voltage)의 균일도가 우수할 뿐만 아니라 특히 Side-wall을 이용한 self-align 게이트는 소오스 저항을 줄일 수 있어 고성능의 소자 제작을 가능하게 한다.(1) 본 연구의 핵심이 되는 Side-wall을 형성하기 위하여 PECVD법에 의한 SiOx 박막을 증착하고, 건식식각법을 이용하여 SiOx side-wall을 형성하였다. 이 공정을 이용하여 소오스 저항이 낮고 임계전압의 균일도가 우수한 고성능의 self-aligned gate MESFET을 제작하였다. 3inch GaAs 기판상에 이온주입법에 의한 채널 형성, d.c. 스퍼터링법에 의한 WNx 증착, PECVD법에 의한 SiOx 증착, MERIE(Magnetic Enhanced Reactive Ion Etcing)에 의한 Side-wall 형성, LDD(Lightly Doped Drain)와 N+ 이온주입, 그리고 RTA(Rapid Thermal Annealing)를 사용하여 활성화 공정을 수행하였다. 채널은 40keV, 4312/cm2로, LDD는 50keV, 8e12/cm2로 이온주입하였고, 4000A의 SiOx를 증착한 후 2500A의 Side-wall을 형성하였다. 옴익 접촉은 AuGe/Ni/Au 합금을 이용하였고, 소자의 최종 Passivation은 SiNx 박막을 이용하였다. 제작된 소자의 전기적 특성은 hp4145B parameter analyzer를 이용한 전압-전류 측정을 통하여 평가하였다. Side-wall 형성은 0.3$\mu\textrm{m}$ 이상의 패턴크기에서 수직으로 잘 형성되었고, 본 연궁에서는 게이트 길이가 0.5$\mu\textrm{m}$인 MESFET을 제작하였다. d.c. 특성 측정 결과 Vds=2.0V에서 임계전압은 -0.78V, 트랜스컨덕턴스는 354mS/mm, 그리고 포화전류는 171mA/mm로 평가되었다. 특히 본 연구에서 개발된 트랜지스터의 게이트 전압 변화에 따른 균일한 트랜스 컨덕턴스의 특성은 RF 소자로 사용할 때 마이크로 웨이브의 왜곡특성을 없애주기 때문에 균일한 신호의 전달을 가능하게 한다. 0.5$\mu\textrm{m}$$\times$100$\mu\textrm{m}$ 게이트 MESFET을 이용한 S-parameter 측정과 Curve fitting 으로부터 차단주파수 fT는 40GHz 이상으로 평가되었고, 특히 균일한 트랜스컨덕턴스의 경향과 함께 차단주파수 역시 게이트 바이어스, 즉 소오스-드레스인 전류의 변화에 따라 균일한 값을 보였다. 본 연구에서 개발된 Side-wall 공정은 게이트 길이가 0.3$\mu\textrm{m}$까지 작은 경우에도 사용가능하며, WNx self-align gate MEESFET은 낮은 소오스저항, 균일한 임계전압 특성, 그리고 높고 균일한 트랜스 컨덕턴스 특성으로 HHP(Hend-Held Phone) 및 PCS(Personal communication System)와 같은 이동 통신용 단말기의 MMICs(Monolithic Microwave Integrates Circuits)의 제작에 활용될 것으로 기대된다.

  • PDF

Characterization of (Bi,La)$Ti_3O_12$ Ferroelectric Thin Films on $SiO_2/Si$/Si Substrates by Sol-Gel Method (졸-겔 방법으로 $SiO_2/Si$ 기판 위에 제작된 (Bi,La)$Ti_3O_12$ 강유전체 박막의 특성 연구)

  • 장호정;황선환
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.10 no.2
    • /
    • pp.7-12
    • /
    • 2003
  • The $Bi_{3.3}La_{0.7}O_{12}$(BLT) capacitors with Metal-Ferroelectric-Insulator-Silicon structure were prepared on $SiO_2/Si$ substrates by using sol-gel method. The BLT thin films annealed at $650^{\circ}C$ and $700^{\circ}C$ showed randomly oriented perovskite crystalline structures. The full with at half maximum (FWHM) of the (117) main peak was decreased from $0.65^{\circ}$ to $0.53^{\circ}$ with increasing the annealing temperature from $650^{\circ}C$ to $700^{\circ}C$, indicating the improvement in the crystalline quality of the film. In addition, the grain size and $R_rms$ , values were increased with increasing the annealing temperatures, showing the rough film surface at higher annealing temperatures. From the capacitance-voltage (C-V) measurements, the memory window voltage of the BLT film annealed at $700^{\circ}C$ was found to be about 0.7 V at an applied voltage of 5 V. The leakage current density of the BLT film annealed at $700^{\circ}C$ was about $3.1{\times}10^{-8}A/cm^2$.

  • PDF

Characterization of a Micro Power Generator using a Fabricated Electroplated Coil (전기도금 방법으로 제작한 코일을 이용한 초소형 발전기의 특성분석)

  • Lee, Dong-Ho;Kim, Seong-Il;Kim, Young-Hwan;Kim, Yong-Tae;Park, Min-Chul;Lee, Chang-Woo;Baek, Chang-Wook
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.9-12
    • /
    • 2006
  • We have designed and fabricated micro power generators by electroplating which is important in MEMS(micro electro mechanical system) technique. We have electroplated MEMS coils on the glass substrates and have chosen one of these coils for experiments. The thickness, width, and length of the coil are $7{\mu}m,\;20{\mu}m$, and 1.6 m, respectively. We have analyzed the structure of MEMS coil by SEM. We have made a vibrating system for reproducible results in measurement. With reciprocating a magnet on the surface of a fabricated winding coil, the micro power generator produce an alternating voltage. We have changed the vibrational frequency from 0.5 Hz to 8 Hz. The generated voltage was 106 mV at 3 Hz and 198 mV at 6 Hz. We aim at the micro power generator which can change vibration energy to useful electric energy.

  • PDF

The Pad Recovery as a function of Diamond Shape on Diamond Disk for Metal CMP (Metal CMP 용 컨디셔너 디스크 표면에 존재하는 다이아몬드의 형상이 미치는 패드 회복력 변화)

  • Kim, Kyu-Chae;Kang, Young-Jae;Yu, Young-Sam;Park, Jin-Goo;Won, Young-Man;Oh, Kwang-Ho
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.13 no.3 s.40
    • /
    • pp.47-51
    • /
    • 2006
  • Recently, CMP (Chemical Mechanical Polishing) is one of very important processing in semiconductor technology because of large integration and application of design role. CMP is a planarization process of wafer surface using the chemical and mechanical reactions. One of the most important components of the CMP system is the polishing pad. During the CMP process, the pad itself becomes smoother and glazing. Therefore it is necessary to have a pad conditioning process to refresh the pad surface, to remove slurry debris and to supply the fresh slurry on the surface. A conditioning disk is used during the pad conditioning. There are diamonds on the surface of diamond disk to remove slurry debris and to polish pad surface slightly, so density, shape and size of diamond are very important factors. In this study, we characterized diamond disk with 9 kinds of sample.

  • PDF

A Numerical Study on Dynamic Characteristics of Counter-Rotating Rigid/Deformable Rolls in Press Contact (압착되어 회전하는 강체/변형 롤의 동적 특성에 관한 수치해석 연구)

  • Lee, Moon-Kyu;Lee, Sang-Hyuk;Hur, Nahm-Keon;Seo, Young-Jin;Kim, In-Cheol;Lee, Sung-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.8
    • /
    • pp.869-876
    • /
    • 2011
  • It is important to analyze the dynamic behavior of counter-rotating rigid/deformable rolls in the roll-coating process, because the stability of the process is affected by the dynamic characteristics. In the present study, the effects of material property, angular velocity, and gap size on the contact pressure and contact shape of the deformable roll are numerically investigated. The behavior of two rolls with a negative gap was analyzed using the finite element method, and the material property of the deformable roll was applied with the Mooney-Rivlin coefficients of the hyper-elastic model. The contact shape is affected by the gap size, and the contact pressure mainly depends on the stiffness of the deformable roll and the gap size. To maintain a negative gap between two rolls, controls such as load and displacement controls must be used. The results indicate that displacement control can reduce the instability.

Design of a Dual-band Snowflake-Shaped Microstrip patch Antenna With Short-pin For 5.2/5.8 GHz WLAN System (WLAN System을 위한 Short-Pin을 갖는 Snowflake 모양의 Dual-band(5.2/5.8 GBz) 마이크로스트립 패치 안테나 설계 및 제작)

  • Song, Jun-Sung;Choi, Sun-Ho;Lee, Hwa-Choon;Kwak, Kyung-Sup
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.4A
    • /
    • pp.324-329
    • /
    • 2009
  • In this paper, a novel Snowflake-shaped microstrip patch antenna for application in the WLAN(5.2/5.8GHz) band is designed and fabricated. The size of antenna is $21.2{\times}16mm^2$ and substrate is used Taconic-RF30. To obtain sufficient bandwidth in Return loss <-10dB and dual resonance characteristic, the Short-pin is inserted on the patch and the coaxial probe source is used. The measured results of fabricated antenna show 220MHz and 135MHz bandwidth in Return loss <-10dB referenced to the WLAN(5.2/5.8GHz) band. The measured antenna gain is $4.7{\sim}6.9dBi$ in the WLAN(5.2/5.8GHz) band. The experimental 3-dB beam width in I-plane and H-plane are $73.2^{\circ}/82.75^{\circ}$ for 5.1500Hz, $74.56^{\circ}/83.63^{\circ}$ for 5.3500Hz, and $86.24^{\circ}/85.15^{\circ}$ for 5.7850Hz, respectively.

Fabrication and Characterization of CNFs/Magnesium Composites Prepared by Liquid Pressing Process (액상가압공정을 이용한 CNF/Mg 복합재료의 제조 및 특성평가)

  • Kim, Hee-Bong;Lee, Sang-Bok;Yi, Jin-Woo;Lee, Sang-Kwan;Kim, Yang-Do
    • Composites Research
    • /
    • v.25 no.4
    • /
    • pp.93-97
    • /
    • 2012
  • Carbon nano fibers (CNFs) reinforced magnesium alloy (AZ91) matrix composites have been fabricated by liquid pressing process. In order to improve the dispersibility of CNFs and the wettability with magnesium alloy melt, CNFs were mixed with submicron sized SiC particles ($SiC_p$). Also, the mixture of CNFs and $SiC_p$ were coated with Ni by electroless plating. In liquid pressing process, AZ91 melts have been pressed hydrostatically and infiltrated into three reinforcement preforms of only CNFs, the mixture of CNFs and $SiC_p$ (CNF+$SiC_p$), and Ni coated CNFs and $SiC_p$ ((CNF+$SiC_p$)/Ni). Some CNFs agglomerates were observed in only CNFs reinforced composite. In cases of the composites reinforce with CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni, CNFs were dispersed homogeneously in the matrix, which resulted in the improvement of mechanical properties. The compressive strengths of CNF+$SiC_p$ and (CNF+$SiC_p$)/Ni reinforced composites were 38% and 28% higher than that of only CNFs composite.

Effect of Electropolishing on Surface Quality of Stamped Leadframe (Stamped Leadframe의 표면 품질에 미치는 전해연마 효과)

  • 남형곤;박진구
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.7 no.3
    • /
    • pp.45-54
    • /
    • 2000
  • The effect of electropolishing far stamped leadframe on the removal of the edge burr and residual stress relief was examined. The present study showed that the electropolishing could be used for enhanced surface quality of stamped leadframes. The electropolishing was performed at the condition of 60% phosphoric acid electrolyte, 5 ampere of current and 3 cm electrode gap at $70^{\circ}C$ for 2 minutes for Alloy42 type leadframe, and $50^{\circ}C$ for 1.5 minutes for C-194 type leadframe. The FWHM values from X-ray diffraction showed that residual stress of electropolished leadframe recovered to the level of as-received raw materials and surface roughness measured by using AFM tuned out to be improved by 0.079 $\mu\textrm{m}$ and 0.014 $\mu\textrm{m}$ ($R_{rms}$) far alloy 42 and C-194 type leadframes, respectively. The plated thickness using XRF showed the improved uniformity in thickness variation by 0.4~0.5 $\mu\textrm{m}$ and grain growth, which is favorable for interface adhesion, was also observed from the bake test samples. We could certify dimensional stability of leadframe with inspection by means of 3D-topography and hardness measurements.

  • PDF

Influence of Polarization Behaviors on the ECM Characteristics of SnPb Solder Alloys in PCB (PCB에서의 ECM 특성에 미치는 SnPb 솔더 합금의 분극거동의 영향)

  • Lee Shin-Bok;Yoo Young-Ran;Jung Ja-Young;Park Young-Bae;Kim Young-Sik;Joo Young-Chang
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.12 no.2 s.35
    • /
    • pp.167-174
    • /
    • 2005
  • Smaller size and higher integration of electronic components make smaller gap between metal conducting layers in electronic package. Under harsh environmental conditions (high temperature/humidity), electronic component respond to applied voltages by electrochemically ionization of metal and metal filament formation, which lead to short failure and this phenomenon is termed electrochemical migration(ECM). In this work, printed circuit board(PCB) is used for determination of ECM characteristics. Copper leads of PCB are soldered by eutectic solder alloys. Insulation breakdown time is measured at $85^{\circ}C,\;85{\%}RH$. CAF is the main mechanism of ECM at PCB. Pb is more susceptible to CAF rather than Sn, which corresponds well to the corrosion resistance of solder materials in aqueous environment. Polarization tests in chloride or chloride-free solutions fur pure metal and eutectic solder alloys are performed to understand ECM characteristics. Lifetime results show well defined log-normal distribution which resulted in biased voltage factor(n=2) by voltage scaling. Details on migration mechanism and lifetime statistics will be presented and discussed.

  • PDF