• Title/Summary/Keyword: 마이크로스트립 패치

Search Result 478, Processing Time 0.021 seconds

Developement of Planar Active Array Antenna System for Radar (평면형 능동 위상 배열 레이더용 안테나 시스템 개발)

  • Chon, Sang-Mi;Na, Hyung-Gi;Kim, Soo-Bum;Lee, Jeong-Won;Kim, Dong-Yoon;Kim, Seon-Joo;Ahn, Chang-Soo;Lee, Chang-Hee
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.12
    • /
    • pp.1340-1350
    • /
    • 2009
  • The design and implementation of planar Active Phased Array Antenna System are described in this paper. This Antenna system operates at X-band with its bandwidth 10 % and dual polarization is realized using dual slot feeding microstrip patch antenna and SPDT(Single Pole Double Through) switch. Array Structure is $16\times16$ triangular lattice structure and each array is composed of TR(Transmit & Receive) module with more than 40 dBm power. Each TR module includes digital attenuator and phase shifter so that antenna beam can be electronically steered over a scan angle$({\pm}60^{\circ})$. Measurement of antenna pattern is conducted using a near field chamber and the results coincide with the expected beam pattern. From these results, it can be convinced that this antenna can be used with control of beam steering and beam shaping.

Dual-band Monopole Antenna with Half X-slot for WLAN (절반의 X-슬롯을 가진 무선랜용 이중대역 모노폴 안테나)

  • Shin, Dong-Gi;Lee, Young-Soon
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.5
    • /
    • pp.449-455
    • /
    • 2018
  • For the size reduction, we propose a microstrip-fed monopole antenna with half X-slot in the radiation patch and cover WLAN dual band 2.4 GHz band (2.4 ~ 2.484 GHz) and 5 GHz band (5.15 ~ 5.825 GHz). The frequency characteristics such as impedance bandwidth and resonant frequencies were satisfied by optimizing the numerical values of various parameters, while the reflection loss in 5 GHz was improved by using defected ground structure (DGS). The proposed antenna is designed and fabricated on a FR-4 substrate with dielectric constant 4.3, thickness of 1.6 mm, and size of $24{\times}41mm^2$. The measured impedance bandwidths (${\mid}S_{11}{\mid}{\leq}-10dB$) of fabricated antenna are 450 MHz (2.27 ~ 2.72 GHz) in 2.4 GHz band and 1340 MHz (4.79 ~ 6.13 GHz) in 5 GHz band which sufficiently satisfied with the IEEE 802. 11n standard in dual band. In particular, radiation patterns which are stable as well as relatively omni-direction could be obtained, and the gain of antennas in each band was 1.31 and 1.98 dBi respectively.

A Study of Dual-Frequency Microstrip Patch Antenna (이중공진 마이크로스트립 패치 안테나에 관한 연구)

  • 장준영;김준모;윤영중;엄순영;전순익
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.515-525
    • /
    • 1998
  • In this paper, for both transmission and reception with single antenna system of satellite communication, dual-frequency antennas which operate simultaneously at 12.5 GHz and at 14.25 GHz are designed, constructed and measured. Also by using dual feeding structure, the problems of single-fed dual-frequency antenna such as the separation of transmitting and receiving signals and single polarization, are solved. Microstrip patch as a radiation element of dual-fed dual-frequency antenna has width and length which are the resonance lengths of the corresponding frequencies for transmission and reception, respectively. The effects of the feed line on the other frequency feeding are minimized with the optimal matching scheme for the feed lines. For solving the space problems of dual-fed two-dimensional array antennas, microstrip-line and coaxial probe feedings are used for each frequency and a two-dimensional $2\times2$ array antenna was designed and measured their characteristics. The experimental results show that errors of resonance frequencies are less than 1.44%, the return losses are less than -21 dB and the isolations between two feeding ports are less than -21 dB. The characteristics of radiation patterns of dual frequency microstrip antenna are measured and evaluated. The directivities, sidelobe levels and cross polarizations are also measured and compared with the simulations. The results show some errors due to the misalignment of coaxial probe feeding.

  • PDF

Design and Implementation of Monopole Antenna with Parasitic Element of Spiral Shape and L-Resonator (스파이럴 구조 기생 소자와 L자형 공진기를 갖는 모노폴 안테나 설계 및 구현)

  • Yoon, Kwang-Yeol;Lee, Seungwoo;Kim, Jang-Yeol;Rhee, Seung-Yeop;Kim, Nam
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.1
    • /
    • pp.11-19
    • /
    • 2013
  • In this paper, we designed and implemented the planar monopole antenna using the coupling effect for the multi-band characteristic. A parasitic element for the multi-band characteristic based on a rectangular patch with single resonance is inserted. Spiral shaped parasitic element is used for minimizing the antenna size and obtaining the multi-resonance characteristic. The frequency characteristics are modified and optimized by varying specific parameters. By inserting an L-shaped resonator at both sides of the feed line which connected through the via hole to the ground plane, unnecessary frequency bands are eliminated. Proposed antenna dimension is $40{\times}60{\times}1mm^3$. It is fabricated on the FR-4 substrate(${\varepsilon}_r$=4.4) using a microstrip line of $50{\Omega}$ for impedance matching. By measurement results, the characteristic of the return loss under -10 dB are 1.714~2.496 GHz, 2.977~4.301 GHz, and 4.721~6.315 GHz, and the radiation patterns have omni-directional shapes.

SAR Analysis and Design the Microstrip Patch Antenna on Dual-Band(PCS/IMT-2000) (이중대역(PCS/IMT-2000) 마이크로스트립 패치 안테나 설계 및 구조에 따른 SAR 분석)

  • Choi, Yun-Hi;Shim, Ho-Sub;Kim, Nam;Park, Ju-Derk
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.1
    • /
    • pp.12-20
    • /
    • 2004
  • In this paper, the detection of 1 g and 10 g averaged SAR on human head caused by PCS/IMT-2000 handhold phones is analyzed and discussed. Planar structured Single-Semi-disc MPA and double-Semi-disc MPA is designed and resonance characteristics with variety of design parameters are analyzed. As a result, 2.0 ㎓ center frequency, at the bandwidth of single-semi-disc MPA and double-semi-disc MPA are 15.5 % and 31 %, respectively. And monopole antenna with W4 length is designed and compared with double-semi-disc MPA in SARs. The SARs caused by double-semi-disc MPA on folder type handset are 0.811 W/kg and 0.507 W/kg and are about 32.7 % lower than monopole-1.206 W/kg and 0.7552 W/kg. While the radiation pattern of the monopole antenna is symmetrical, that of planar structured antenna is asymmetrical and SAR caused by double-semi-disc MPA is less than SAR by the monopole antenna.

Design of 5.8 GHz Patch Array Antenna for FTMS Roadside Equipment (FTMS 기지국용 5.8 GHz 대역 배열 패치 안테나 설계)

  • Kwon, Han-Joon;Lee, Jae-Jun;Lee, Seung-Hwan;Kim, Yong-Deak
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.7 no.4
    • /
    • pp.61-70
    • /
    • 2008
  • This paper designed the antenna for collecting and servicing the traffic information that apply to freeway Traffic Management System, as using DSRC (Dedicated Short Range Communication). Active DSRC is the technology that is using 5.8GHz Radio Frequency to a mean Sequency and there are a lot of the case occurring a physical electric wave shadowing because of the traveling straight of a electric wave. In such inferior communication environment, it constructed the stabilized communication link that can do collecting and servicing the correct traffic information and designed the beam pattern considering the establishment position of the antenna that can apply to various road environments and a communication area. By considering the communication link environment, this paper designed and manufacture the mean frequency of 5.8GHz, the input loss of -17dB in 75MHz bandwidth, the Axial ratio of 1.5:1, and $2{\times}4$ array microstrip antenna which beam pattern have the characteristic of $55^{\circ}$ horizontal half power beam width and $26^{\circ}$elevation half power beam width and the minimum establishment height of the antenna was designed as 14m for avoiding electric wave shadowing on a physical condition between vehicles

  • PDF

Design and Fabrication of Dual Linear Polarization Antenna for 28 GHz Band (28 GHz 대역에서 동작하는 이중 선형편파 안테나의 설계 및 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.1
    • /
    • pp.13-22
    • /
    • 2022
  • In this paper, we propose single and array antenna with dual linear polarization characteristics for 28 GHz band. The proposed antenna is designed two microstirp feeding structure and Taconic TLY-5 substrate, which is thickness 0.5 mm, and the dielectric constant is 2.2. The size of single patch antenna is 3.4 mm×3.4 mm, and total size of single antenna is 15.11 mm×15.11 mm. Also, the size of array antenna is 3.15 mm×3.15 mm, and total size of array antenna is 21.5 mm×13.97 mm. From the fabrication and measurement results, for 1×2 array antenna, in case of vertical polarization, cross polarization ratios are obtained from 14.23 dB to 20.79 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.31 dB to 22.74 dB for input port 1. in case of vertical polarization, cross polarization ratios are obtained from 15.75 dB to 25.88 dB and in case of horizontal polarization, cross polarization ratios are obtained from 14.70 dB to 22.82 dB for input port 2.

A Study on the Shaped-Beam Antenna with High Gain Characteristic (고이득 특성을 갖는 성형 빔 안테나에 대한 연구)

  • Eom, Soon-Young;Yun, Je-Hoon;Jeon, Soon-Ick;Kim, Chang-Joo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.18 no.1 s.116
    • /
    • pp.62-75
    • /
    • 2007
  • This paper describes a shaped-beam antenna for increasing the antenna gain of a radiating element. The proposed antenna structure is composed of an exciting element and a multi-layered disk array structure(MDAS). The stack micro-strip patch elements were used as the exciter for effectively radiating the electromagnetic power to the MDAS over the broadband, and finite metallic disk array elements - which give the role of a director for shaping the antenna beam with the high gain - were finitely and periodically layered onto it. The efficient power coupling between the exciter and the MDAS should be carried out in such a way that the proposed antenna has a high gain characteristic. The design parameters of the exciter and the MDAS should be optimized together to meet the required specifications to meet the required specifications. In this study, a shaped-beam antenna with high gain was optimally designed under the operating conditions with a linear polarization and the frequency band of $9.6{\sim}10.4\;GHz$. Two methods constructed using thin dielectric film and dielectric foam materials respectively were also proposed in order to implement the MBAS of the antenna. In particular, through the computer simulation process, the electrical performance variations of the antenna with the MDAS realized by the thin dielectric film materials were shown according to the number of disk array elements in the stack layer. Two kinds of antenna breadboard with the MDAS realized with the thin dielectric film and dielectric foam materials were fabricated, but experimentation was conducted only on the antenna breadboard(Type 1) with the MDAS realized with the thin dielectric film materials according to the number of disk array elements in the stack layer in order to compare it with the electrical performance variations obtained during the simulation. The measured antenna gain performance was found to be in good agreement with the simulated one, and showed the periodicity of the antenna gain variations according to the stack layer number of the disk array elements. The electrical performance of the Type 1 antenna was measured at the center frequency of 10 GHz. As the disk away elements became the ten stacks, a maximum antenna gain of 15.65 dBi was obtained, and the measured return loss was not less than 11.4 dB within the operating band. Therefore, a 5 dB gain improvement of the Type 1 antenna can be obtained by the MDAS that is excited by the stack microstrip patch elements. As the disk array elements became the twelve stacks, the antenna gain of the Type 1 was measured to be 1.35 dB more than the antenna gain of the Type 2 by the outer dielectric ring effect, and the 3 dB beam widths measured from the two antenna breadboards were about $28^{\circ}$ and $36^{\circ}$ respectively.