• Title/Summary/Keyword: 마모율

Search Result 228, Processing Time 0.033 seconds

Friction and Wear Characteristics of Silica/Epoxy Composites for various Particle Size (입자지름의 변화에 따른 실리카 복합재료의 마찰 및 마모 특성)

  • Koh, Sung-Wi;Kim, Hyung-Jin;Kim, Kae-Dong;Kim, Chang-Soo
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.141-144
    • /
    • 2006
  • In this study, the friction and wear characteristics of pure epoxy and silica-filled epoxy resin composites with average silica particle diameter of $6-33{\mu}m$ were investigated at ambient temperature by pin-on-disc friction test. The cumulative wear volume, friction coefficient and wear rate of these materials against SiC abrasive paper were determined experimentally. The cumulative wear volume tended to increase nonlinearly with increase of sliding distance and depended on diameter of the silica particle for all these composites. The sliding wear tests of the materials demonstrated that the friction coefficient and the wear rate of silica filled epoxy composites were lower than those of the pure epoxy. silica filled epoxy.

  • PDF

A Study on Effect of Tool Wear Rate upon Cutting Tool Shape in a Titanium Rough Cut Machining (티타늄 황삭가공에 있어서 공구형상이 공구마모율에 미치는 영향에 관한 연구)

  • Jung, Hwa
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.10
    • /
    • pp.27-33
    • /
    • 2019
  • The aviation industry has grown beyond the simple processing and assembling of aircraft parts and now designs and exports finished aircraft. In this study, the vertical CNC milling rotational speed and feed rate were parameters to investigate the life of tools according to their shape: (flat, round, and ball end mill) in the rough cutting of titanium. These tools are widely used in aircraft manufacturing and assembly. The purpose of this study is to measure the cutting temperature generated during the cutting process and calculate the rate of tool wear. This will be accomplished by measuring the tool weight before and after cutting the specimen and to compare it with the results of previous studies. Our study showed that the maximum cutting temperature increased as cutting time, tool rotational speed, and feed rate increased. The highest cutting temperatures were recorded for the ball, round, and flat end mill, respectively. Tool wear for the ball, round, and flat end mill increased as the speed and feed rate increased. The flat end mill exhibited the highest rate of wear from a minimum of 0.62% to a maximum of 2.88%.

Improvement of Tribological Properties of Cr-X-N(X=Si, Zr) Coatings Deposited on Hydraulic Pump Part (Cr-X-N(X=Si, Zr) 코팅된 유압펌프 부품의 마모특성 향상에 관한 연구)

  • Kim, Beom-Seok;Kim, Jeong-Taek;Lee, Sang-Yul
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2007.04a
    • /
    • pp.59-60
    • /
    • 2007
  • 전기 정유압장치는 밸브플레이트, 실린더 배럴, 피스톤, 샤프트등으로 이루어진 유압펌프의 부품에 요구되는 기계적 성질을 향상하기위하여 이온 질화를 포함한 다양한 연구가 진행 되어지고 있다. 그러나 본실험에서는 이온질화시 발생하는 열변형등의 단점을 해결하기 위하여 PVD 박막을 실시하여 유압펌프 부품의 마모특성 향상에 관한 연구를 실시하였다.

  • PDF

Study of Factor Causing Wear of a Barrel Cam in a Paper-Cup-Forming Machine by Using Multibody Dynamics Model (다물체 동역학 모델을 이용한 종이컵 성형기용 배럴캠의 마모 인자에 관한 연구)

  • Jun, Kab-Jin;Park, Tae-Won;Cheong, Kwang-Yeil;Kim, Young-Guk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.361-367
    • /
    • 2010
  • The barrel cam, which is a type of cylindrical cam, has been widely used as a part of index drive units for automatic manufacturing machines. The axis of rotation of the barrel cam is orthogonal to the axis of rotation of the follower. The index drive rotates or dwells depending on the cam profile, while the cam rotates with a constant velocity. Continuous sliding contact between the barrel cam and the follower surfaces causes wearing of the adhesive between them. This study shows that the contact force between two sliding bodies is responsible for the wear of the barrel cam in the paper-cup-forming machine. This contact force is calculated by using the multibody dynamics model of the paper-cup-forming machine. The analytical result is validated by comparing it to the actual wear spots on the real product.

Effect of Wear Environments on the High Stress Sliding Wear Behavior of Ni-base Deloro 50 Alloy (Ni계 Deloro 50합금의 고하중 Sliding 마모거동에 미치는 마모환경의 영향)

  • Choi, Jin-Ho;Choi, Se-Jong;Kim, Jun-Gi;Kim, Yong-Deog;Kim, Hak-Soo;Mun, Ju-Hyun;Baek, Ha-Chung;Lee, Duck-Hyun;Kim, Seon-Jin
    • Korean Journal of Materials Research
    • /
    • v.8 no.12
    • /
    • pp.1115-1120
    • /
    • 1998
  • The sliding wear behavior of Ni-base hardfacing alloy, Deloro 50, was investigated at the contact stresses of 15ksi and 30ksi under the various wear environments. In air at room temperature, Deloro 50 showed lower wear resistance than Stellite 6 even at 15ksi due to the occurrence of severe adhesive wear. This seems to be caused by the lower hardness and work- hardening rate of Deloro 50 than those of Stellite 6. In water at room temperature, Deloro 50 showed as good wear resistance as Stellite 6 at 15ksi. It was considered to be due to that water could effectively prevent metal to metal contact through contacting asperities. However, Deloro 50 showed severe adhesive wear at 30ksi in water at room temperature. It seems to be that the water could not suppress adhesion wear at 30ksi. At $300^{\circ}C$ in air, Deloro 50 exhibited higher wear resistance than Stellite 6 even at 30ksi. It was considered that the oxide glaze layers formed on wear surface during sliding, effectively prevented direct metal-to-metal contacts.

  • PDF

Fabrication and Characteristics of $Al_2O_{3p}$/AC8A Composites by Pressureless Infiltration Process (무가압함침법에 의한 $Al_2O_{3p}$/AC8A 복합재료의 제조 및 특성)

  • 김재동;고성위;정해용
    • Composites Research
    • /
    • v.13 no.6
    • /
    • pp.1-8
    • /
    • 2000
  • The fabrication Process of $Al_2O_{3p}$/AC8A composites by pressureless infiltration technique and the effects of additive Mg content and volume fraction of particulate reinforcement on mechanical and wear properties were investigated. It was found that the bending strength decreased with increasing volume fraction of $Al_2O_{3p}$ particles. Whereas hardness increased with volume fraction of $Al_2O_{3p}$ particles. The decrement of strength in case of high volume fraction of $Al_2O_{3p}$ particles was attributed to high porosity level. In terms of additive Mg content, $Al_2O_{3p}$/AC8A composites containing around 5~7wt% of additive Mg indicated the highest strength, and hardness values increased with additive Mg contents. Wear resistance of AC8A alloy were improved by reinforcement of $Al_2O_{3p}$ particles especially at high sliding velocity. Wear property of $Al_2O_{3p}$/AC8A composites and AC8A alloy exhibited different aspects. $Al_2O_{3p}$/AC8A composites indicated more wear loss than AC8A alloy at slow velocity region. However a transition point of wear loss was found at middle velocity region which shows the minimum wear loss and wear loss at high velocity region exhibited almost same value as at slow velocity region, whereas wear loss of AC8A alloy almost linearly increased with sliding velocity. It was found that $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 20% exhibited abrasive wear surface regardless of sliding velocity and $Al_2O_{3p}$/AC8A composites containing $Al_2O_{3p}$ volume fraction of 40% showed slightly adhesive wear surface at low sliding velocity, and it progressed to severe wear as increasing the sliding velocity.

  • PDF

Microstructure and Wear Characteristics of TiC-SKD11 Composite Fabricated by Liquid Pressing Infiltration Process (용융가압함침 공정으로 제조한 TiC-SKD11 복합재료의 미세조직 및 내마모 특성)

  • Cho, Seungchan;Jo, Ilguk;Lee, Sang-Kwan;Lee, Sang-Bok
    • Composites Research
    • /
    • v.30 no.3
    • /
    • pp.209-214
    • /
    • 2017
  • Titanium carbide (TiC) reinforced SKD11 matrix composites were successfully fabricated by a novel liquid pressing infiltration process. Microstructure, mechanical properties, and wear characteristics of the fabricated 60 vol% TiC-SKD11 composite are analyzed. The composite exhibits superior mechanical properties, such as hardness and compressive strength with 24% lower density as compared with SKD11. Improved wear resistance of the TiC-SKD11 composite originates from uniformly reinforced TiC having strong interfacial bonding strength between TiC/SKD11 interface.

Friction and Wear Characteristics of Carbon Fiber Reinforced Composites against Lay-up Orientation (CFRP 복합재의 적층방향에 대한 마찰 및 마모 특성)

  • Koh, S.W.;Choi, Y.K.
    • Journal of Power System Engineering
    • /
    • v.9 no.2
    • /
    • pp.57-64
    • /
    • 2005
  • This paper is the study on dry sliding wear behavior of carbon fiber reinforced epoxy matrix composites against lay-up orientation. Tests were investigated on the effect of the lay-up orientation, fiber sliding direction, load and sliding velocity when circumstance keep continuously at $21^{\circ}C$, 60%RH. Pin-on-disk dry sliding wear tests for each experimental condition were carried out with a carbon fiber reinforced plastic pin on stainless steel disk in order to search the friction and wear characteristics. The wear rates and friction coefficients against the stainless steel counterpart were experimentally determined and the wear mechanisms were microscopically observed. The effect on friction and wear behavior are observed differently, according to various conditions. When sliding took place against counterpart, the highest wear resistance and the lowest friction coefficient were observed in the $[0]_{24s}$ lay-up orientation at anti-parallel direction.

  • PDF

A Study on the Wear Behavior of SPS5 Steel Surface-Treated by Induction Hardening Method (고주파 열처리에 따른 SPS5 강의 마모특성 변화에 대한 연구)

  • Kim, Min-Ho;Rhee, Kyong-Yop;Paik, Young-Nam;Hong, Jai-Sung;Ham, Young-Sam
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.10
    • /
    • pp.74-79
    • /
    • 2006
  • In this study, the tempering effect on the wear characteristics of induction-hardened SPS5 steel was investigated. For this purpose, three tempering conditions were applied to control the hardness of heat-treated SPS5 steel. Ball-on-disk wear tests have been performed using zircornia balls on the tempered specimens to determine the variation of wear characteristics. The results showed that friction coefficient decreased with increasing hardness for induction hardening conditions. This seems to occur because real contact area between specimen and mating ball was affected by the specimen hardness.

A Study on Wear Life Prediction of Disk Brake Pads (디스크 브레이크 패드 수명 예측에 관한 연구)

  • 여태인
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.4
    • /
    • pp.199-205
    • /
    • 2002
  • This paper presents a numerical technique to analyze wear life of automotive disk brake pad, where FFT-FEM method is adopted to determine the transient temperature distribution of the disk surface. A specimen ova frictional material is tested on a small scale brake dynamometer to find the dependency of the wear rate on temperature change, from which and the temperature analysis results, given the wear test mode, wear behavior of the pad material fur the vehicle can be predicted. Numerical examples show the predicted wear life of the vehicle coincides with the manufacture's recommended time interval for replacing the pads.