• 제목/요약/키워드: 마모계수

검색결과 223건 처리시간 0.028초

Coated $Si_3N_4$-TiC ceramic 공구의 마모 특성 (Wear characteristics of coated $Si_3N_4$-TiC ceramic tool)

  • 김동원;권오관;이준근;천성순
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 1988년도 제7회 학술강연회초록집
    • /
    • pp.43-48
    • /
    • 1988
  • 보호피막을 입히는 방법으로는 화학증착법과 물리증착법이 주로 사용되고 있다. 고온 분위기에서 기체 상태인 반응물의 화학반응을 통하여 원하는 물질을 증착시키는 화학증착법은 물리증착법에 비해 점착성(adhesion)이 우수하고, 보호피막층의 성분조절이 용이하며, 반응물이 기체상태이므로 대량생산이 용이하여 보호피막 증착법으로 많이 사용되고 있다. $Si_3N_4$-TiC ceramic 표면에 TiC, TiN 및 Ti(C, N) coating을 함으로써 얻을 수 잇는 장점들은 표면층의 경도를 증가시키며, steel과의 마찰계수의 감소 및 coating 층 자체가 고온에서 고체 윤활제로 작용하여 마찰열의 상당한 감소를 얻을 수 있으며, 또한 coating층 자체가 비교적 안정한 화합물로 피삭재내의 성분원소들에 대한 diffusion barrier로 작용되며, 내식성을 증가시킬 수 있다. 본 연구에서는 각 증착층의 미소경도, 열충격저항, steel과의 마찰계수를 측정하였으며, 최종적으로 절삭시험을 통하여 증착층들의 내마모성을 조사, 규명하였다.

  • PDF

엔드밀링 가공에서 절삭력 계수 데이터베이스 구현을 위한 일반화된 방법론 (Generalized Method for Constructing Cutting Force Coefficients Database in End-milling)

  • 안성호;고정훈;조동우
    • 한국정밀공학회지
    • /
    • 제20권8호
    • /
    • pp.39-46
    • /
    • 2003
  • Productivity and machining performance can be improved by cutting analysis including cutting force prediction, surface error prediction and machining stability evaluation. In order to perform cutting analysis, cutting force coefficients database have to be constructed. Since cutting force coefficients are dependent on cutting condition in the existing research, a large number of calibration tests are needed to obtain cutting force coefficients, which makes it difficult to build the cutting force coefficients database. This paper proposes a generalized method for constructing the cutting force coefficients database us ins cutting-condition-independent coefficients. The tool geometry and workpiece material were considered as important components for database construction. Cutting force coefficients were calculated and analyzed for various helix and rake angles as well as for several workpiece. Furthermore, the variation of cutting force coefficients according to tool wear was analyzed. Tool wear was found to affect tool geometry, which results in the change of cutting force coefficients.

RF PCVD 에 의한 DLC 박막합성과 Tribology특성평가 (Tribological Characteristics and Synthesis of DLC Thin Film by using a RE PCVD)

  • 김성영;이상현;신승용;고명완
    • 한국재료학회지
    • /
    • 제7권12호
    • /
    • pp.1070-1076
    • /
    • 1997
  • DLC(diamond-like carbon)박막을 RF PCVD법으로 증착하여 일반적인 증착특성과 마찰.마모특성사이의 관계를 알아보기 위해, 증착속도, 박막경도, 내무압축응력 및 박막내의 수소량 측정을 통해 일반적인 증착특성을 조사하였다. 그리고 증착된 박막의 C-H 결합구조와 물질특성 분성을 위해 각각 FTIR 및 Raman분광분석을 행하였다. 박막의 마찰계수와 내마모특성은 Pin-on-disk형 마찰시험기를 이용하여 상기의 증착조건과의 상관관계를 조사하였다. DC self-bais, 즉 충돌에너지가 커지면 박막의 증착속도와 경도는 대체로 증가하고, 박막내의 압축응력은 최대값을 가지다가 다시 감소됨을 알 수 있언ㅆ다. 또한 박막내의 수소량은 급격히 감소하다가 포화됨을 알 수 있었다. 얻어진 박막의 마찰계수는 최소 0.08로 분위기가 dry일 때 더 작으며 내마모성은 이온의 충돌에너지와 밀접한 관계를 가지며 모재인 Si-wafer보다 훨씬 큼을 알수 있었다.

  • PDF

이온소스법에 의한 DLC막의 제작 및 기계적 특성

  • 김미선;홍성필;김현구
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2007년도 추계학술대회 논문집
    • /
    • pp.164-165
    • /
    • 2007
  • Si(중간층)/DLC(diamond-like carbon)막은 스퍼터와 이온소스(ion source)법에 의한 복합방식(hybrid method)을 이용하여 3mTorr의 반응가스 벤젠($C_6H_6$)분위기에서 Si wafer에 기판온도 $130^{\circ}C$로 180분간 증착하였다. 평가는 표면과 단면에 대해 주사전자현미경(scanning electron microscopy, SEM)과 투자전자현미경(trasmission electron microsope, TEM)으로 관찰하였다. 경도와 마찰계수는 나노인텐터(nanoindetor)와 마모시험기를 이용하였으며, 박막의 구조는 라만스펙트럼으로 분석하였다. 그 결과 박막의 두께는 약 $0.9{\mu}m$, 표면조도는 약 $0.34{\sim}1.64nm$로 평탄한 표면을 가지며 경도는 약 $35{\sim}37GPa$, 마찰계수는 약 $0.02{\sim}0.07$로 관찰되었다. 라만분광법과 전자회절패턴에 의해 IG/ID의 함량비는 $0.54{\sim}0.59$$sp^2$$sp^3$가 혼재된 전형적인 비정질 구조임을 확인하였다.

  • PDF

탄소나노섬유/폴리(메틸 메타크릴레이트) 복합재료의 열적 및 마찰 마모 거동 연구 (Thermal, Frictional and Wear Behavior of Carbon Nanofiber/Poly(methyl methacrylate) Composites)

  • 박수진;임세혁;이재락;이종문
    • 폴리머
    • /
    • 제30권5호
    • /
    • pp.385-390
    • /
    • 2006
  • 본 연구는 폴리(메틸 메타크릴레이트)(PMMA)에 탄소나노섬유(CNF)의 함량을 달리하여 만든 CNF/PMMA 나노복합재료의 열적 및 마찰 마모 거동에 관하여 고찰하였다. CNF/PMMA의 열적특성은 시차주사열량계 (DSC)와 열중량 분석기 (TGA), 그리고 동적기계분석기(DMA)를 이용하여 고찰하였으며, 마찰 마모 거동은 마찰마모 시험기 (wow tester)를 이용하여 측정하였다. 결과로서, CNF/PMMA 복합재료의 Tg와 integral procedural decomposition temperature(IPDT), storage modulus (E'), 그리고 tan ${\delta}$의 값은 CNF의 함량이 증가함에 따라 증가하였으며, 마찰계수와 마모량은 CNF 함량 0.1 wt%에서는 감소하였다가 CNF 함량 5-10 wt%에는 점차적으로 증가하는 경향을 나타냈다. 이는 PMMA에 세장비 (aspect ratio)가 큰 CNF가 강화제로 첨가됨에 따라 고분자 사슬의 정렬이 일어나며 또한 수지 내에서 기계적 얽힘(mechanical interlocking) 현상이 증가하여 전체적으로 가교화된 구조를 형성하였기 때문이라 판단된다.

PTFE 복합재료의 마찰 . 마모 특성에 미치는 첨가제의 영향 (Effects of Additives on the Friction and Wear Properties of PTFE Composites)

  • 김용직;엄수현;김윤해
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 1999년도 추계학술발표대회 논문집
    • /
    • pp.88-94
    • /
    • 1999
  • Recently, PTFE-polyimide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polyimide composites. The friction and wear test was carried out for the different composition ratio under the atmosphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. Notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20%-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s because adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI 80%. PI 100% showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

건축물 바닥재의 마모에 따른 미끄럼성능 변동에 관한 연구 (A Study on the Change of Slipperiness of Building Floor-coverings by Friction Wear)

  • 신윤호;최수경
    • 한국건축시공학회지
    • /
    • 제5권1호
    • /
    • pp.53-61
    • /
    • 2005
  • The purpose of this study presents useful data on the choice or development of floor covering from slip viewpoint by examining closely the impact of the changes in sliding experiments due to the wear of floor covering by walk. The result of wear practical test per ten thousand walks enforces some kind of popular floor covering and measure of coefficient of slip resistance as follows: (1) When surface of floor covering is in the state of wet, the degree of wear doesn't affect greatly in slip. (2) When surface of floor covering is in dry and clean state, most floor coverings have the tendency to lower the coefficient of slip resistance with the amount of walk on it. (3) Change in the tendency of slip resistance by wear appeared mainly due to the differences in the state of floor covering and organic floor covering appeared to have great reduction of coefficient of slip resistance than the inorganic ones. (4) According to the result of investigation on changes in tendency of coefficient of slip resistance due to the increase in the number of walk and if two hundred thousand walks were done, regardless of surface shape or kind of site, etc, the safety of floor covering, in slip viewpoint, greatly reduces.

무급유공기압축기 개발을 위한 PTFE계 복합재료의 마찰마모 특성에 관한 연구 (A Study on the Effects of Friction and Wear Properties of PTFE Composites for Oil Free Air Compressor)

  • 김용직;정하돈;김윤해
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제24권1호
    • /
    • pp.67-74
    • /
    • 2000
  • Recently, PTFE-polymide composites are being used self-lubricating parts for industrial field. Thus, this study is mainly concerned with friction and wear properties for the piston ring of non-lubricating air compressor which made of PTFE-polymide composites. The friction and wear test was carried out for the different composition ratio under the atomsphere room temperature and constant load of 7.69N and their friction and wear properties were compared with each other at various sliding speed. notable results are summarized as follows. PTFE 100% showed that friction coefficient was almost same values at 0.94 and 1.88m/s but the value was decreased at 2.83m/s because the friction temperature is higher than low speed. PTFE 80%-PI 20% showed the lowest mean friction coefficient at 2.83m/s. PTFE 20-PI 80% showed the highest friction coefficient at 0.94m/s and the value was decreased at high speed but the value is higher than other materials except PTFE 100 %. PI 100% showed the highest friction coefficient at 0.94 and 1.88m/s becuase adhesive wear mainly occurred that speed. PTFE 100% showed highest specific wear rate on the whole. Specific wear rate of PTFE 80%-PI 20% was almost the same value with PTFE 20%-PI80%. PI 100%showed the lowest value at high sliding speed because the friction surface was thicken and carbonated by high friction temperature.

  • PDF

초음파 진동이 알루미늄 합금의 마찰 마모 특성에 미치는 영향 (Effect of Ultrasonic Vibration on the Friction and Wear Characteristics of Aluminum Alloy)

  • 박재남;이철희
    • Tribology and Lubricants
    • /
    • 제34권4호
    • /
    • pp.132-137
    • /
    • 2018
  • Ultrasonic waves are used in various applications in multiple devices, sensors, and high-power machinery, such as processing machines, welders, and cleaners, because the acoustic vibration frequencies are above the human audible frequency range. In ultrasonic machining, electrical energy at a high frequency of 20 kHz or more is converted into mechanical vibration by a vibrator and an amplifier. This technique allows instantaneous separation between a tool and a workpiece during machining, machining by pulse impulse force at the time of re-contact and minimizes the minute elastic deformations of the workpiece and machine tools due to the cutting effect. The Al7075 alloy used in this study is a typical aluminum alloy with superior strength that is mainly used in aircrafts, automobiles, and sporting goods. To investigate the optimal conditions for machining aluminum alloy using ultrasonic vibration, the present experiment utilized the Taguchi orthogonal array method, and the coefficient of friction was analyzed using the characteristics of the Taguchi technique. In ultrasonic friction and abrasion tests, the changes in the friction coefficient were measured in the absence of ultrasonic vibrations and at 28 kHz and 40 kHz. As a result, the most considerable influence on the friction coefficient was found to be the normal load, and the frequency of ultrasonic vibrations increases, the coefficient of friction increases. It was thus confirmed that the amount of wear increases when ultrasonic vibration is applied.

첨단복합방식재를 이용한 각종 선박구조물의 마찰마모손상의 최소화 (Minimization of Friction and Wear Damage of Marine Structures by Using the Advanced Anti-corrosive Composite Materials)

  • 김윤해;김진우
    • 해양환경안전학회지
    • /
    • 제5권2호
    • /
    • pp.15-26
    • /
    • 1999
  • The marine structures with sea water cooling system always expose to the oceanic atmosphere. Therefore, the protection of the equipments is very important. To investigate the effectiveness of advanced composite materials for the application in offshore environments, the tensile test, hardness test, undercutting property test, permeance test and the friction and wear test were carried out by using various applicable coating materials. The main results obtained can be summarized as follows; 1. The micro-hardness of the Archcoat 502B showed the highest value. 2. The coefficient of friction of the Rigspray coating at the speed of 2.21m/sec showed the lowest value, and that of the Archcoat 502B coating at 1.08m/sec and 0.18m/sec indicated the lowest values. 3. The wear mass at the speed of 0.18m/sec and 1.08m/sec in dry condition showed the smallest values. 4. The Archcoat 502B coating is fitted to the dynamic instruments in the range of low speed and middle speed. Rigspray coating is fitted to the dynamic instruments in the range of high speed. 5. The wear mass of five kinds of coating materials at the range of low speed was very small, and those of the Archcoat S02B, Archcoat 402B and Rigspray coating at high speed range were quitely smaller than those of the Modified Epoxy and Tar Epoxy.

  • PDF