• Title/Summary/Keyword: 마그네슘 추출

Search Result 80, Processing Time 0.025 seconds

Selective Extraction of Cobalt and Nickel in the Presence of Magnesium from Sulphate Solutions by Versatic Acid 10 (마그네슘이 함유된 황산용액에서 Versatic acid-10에 의한 코발트와 니켈의 선택적 추출)

  • Cho, Yeon chul;Ahn, Jae woo;Lee, Jae young
    • Resources Recycling
    • /
    • v.29 no.4
    • /
    • pp.51-57
    • /
    • 2020
  • Separation of Co and Ni over Mg from the sulfuric acid solutions using Cyanex272, PC88A and Versatic acid 10 as an extractant was carried out. From the comparative studies about the extraction behavior of Co, Ni and Mg, Versatic acid 10 was superior to Cyanex272 and PC88A for the selective extraction of cobalt and nickel from the mixed solutions. About 98% of Ni and Co were extracted at equilibrium pH 7.0 and less than 5% of Mg was co-extracted by Versatic acid 10. McCabe-Thiele diagram indicated two stages requirement for Co and Ni extraction by 10% Versatic acid 10 at pH 7.0 and phase ratio (A/O) of 2.0. The loaded Co and Ni in organic phase was stripped effectively the sulfuric acid concentration above 70 g/L. 99.78% of cobalt and 98.42% of nickel were stripped.

Recent Trends and Future Perspectives of the Magnesium Recovery based on Electrolysis (전해 기반 마그네슘 회수 기술의 관련 동향 및 향후 전망)

  • Sang-hun Lee
    • Resources Recycling
    • /
    • v.33 no.2
    • /
    • pp.16-23
    • /
    • 2024
  • The electrolysis for extracting magnesium from seawater or brine primarily involves recovery of magnesium via precipitation as the form of magnesium hydroxide. The technology is classified into cation-exchange membranes (CEM), anion-exchange (AEM) membranes, electrodialysis, and membraneless methods. Recent research has focused on enhancing the efficiency and selectivity of magnesium recovery from seawater or brine containing magnesium, with expectations of effective magnesium recovery even with normal seawater. In a future, the optimization of the selective and efficient recovery of magnesium and various valuable substances through long-term operation of scaled-up systems is crucial with enhancing economic and environmental viability. It is essential to realistically estimate operational costs considering the membrane's lifespan and replacement cycle. Also, detailed and practical process models should be developed based on monitoring data on various factors.

Recovery of Co and Ni from Strong Acidic Solution by Cyanex 301 (강산성용액에서 Cyanex 301에 의한 Co 및 Ni 회수 연구)

  • Cho, Yeon-Chul;Kim, Ki-Hun;Ahn, Jae-Woo
    • Resources Recycling
    • /
    • v.30 no.6
    • /
    • pp.28-35
    • /
    • 2021
  • An experiment was conducted to separate or recover Co and Ni using Cyanex 301 from process by-products and waste resources containing Co and Ni. To separate and recover Co and Ni from simulated leaching solutions, 10 v/v% Cyanex 301 was used as an extractant in this study; Li was not extracted. At equilibrium pH 1.5 and a phase ratio (A/O) of 1.0, 0.44% of Mg and 11.57% of Mn were extracted, and more than 99% of Co and Ni were extracted. McCabe-Thiele diagram analysis confirmed that more than 99.9% of Co and Ni could be extracted simultaneously through two-stage extraction with an extraction phase ratio (A/O) of 2. It was possible to extract Mg and Mn simultaneously through the scrubbing process. In the scrubbing process, more than 99% of Mg and 87% of Mn were scrubbed using 0.05 M of H2SO4, and 99.9% of Mg and more than 80% of Mn were scrubbed using 0.05 M of HCl. In the stripping process, 93% of Co and 5% of Ni were stripped selectively by 3.0 M of H2SO4. However, when 8.0 M of HCl was used as a stripping solution, more than 99.9% of Co and more than 90% of Ni were stripped simultaneously.

Mineral Carbonation of Serpentinite: Extraction, pH swing, and Carbonation (사문암(Serpentinite)을 이용한 광물탄산화: Mg 추출과 pH swing 및 탄산화)

  • LEE, Seung-Woo;Won, Hyein;Choi, Byoung-Young;Chae, Soochun;Bang, Jun-Hwan;Park, Kwon Gyu
    • Journal of the Mineralogical Society of Korea
    • /
    • v.30 no.4
    • /
    • pp.205-217
    • /
    • 2017
  • Mineral carbonation by indirect method has been studied by serpentinite as cation source. Through the carbonation of $CO_2$ and alkaline earth ions (calcium and magnesium) from serpentinite, the pure carbonates including $MgCO_3$ and $CaCO_3$ were synthesized. The extraction solvent used to extract magnesium (Mg) was ammonium sulfate ($(NH_4)_2SO_4$), and the investigated experimental factors were the concentration of $(NH_4)_2SO_4$, reaction temperature, and ratio of serpentinite to the extraction solvent. From this study, the Mg extraction efficiency of approximately 80 wt% was obtained under the conditions of 2 M $(NH_4)_2SO_4$, $300^{\circ}C$, and a ratio of 5 g of serpentinite/75 mL of extraction solvent. The Mg extraction efficiency was proportional to the concentration and reaction temperature. $NH_3$ produced from the Mg extraction of serpentinite was used as a pH swing agent for carbonation to increase the pH value. About 1.78 M of $NH_3$ as the form of $NH_4{^+}$ was recovered after Mg extraction from serpentinite. And, the main step in Mg extraction process of serpentinite was estimated by geochemical modeling.

Magnesium Sulfate Resistance of Geopolymer Incorporating Evaporated Rice Husk Powder (증해추출 왕겨분말을 혼입한 지오폴리머의 황산마그네슘 저항성에 관한 연구)

  • Cho, Seung-Bi;Kim, Young-Su
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.6
    • /
    • pp.663-672
    • /
    • 2022
  • The purpose of this study is to evaluate the magnesium sulfate resistance of a geopolymer mixed with rice husk powder. General concrete, silica fume mixed concrete, and binary blended geopolymer were selected as comparison targets to confirm the magnesium sulfate resistance, and sulfate deterioration was calculated using the compressive strengths with ages. In addition, the weight change rate and the relative dynamic coefficient of the geopolymer were comparatively analyzed, and the degree of etteringite formation was confirmed using X-ray diffraction analysis. the experiment, the geopolymer mixed with 10% rice husk powder showed 10.8% higher compressive strength than concrete with silica fume when submerged for 56 days. Also, the geopolymer mixed with rice husk powder showed a small weight change rate of 0.9 to 1.45%. composition after immersion in magnesium sulfate through X-ray diffraction analysis, it was observed that a small amount of ettringite was dispersed in the geopolymer containing rice husk powder. Thus, there is a high correlation with the corrosion resistance of magnesium sulfate

Fabrication of Mg(OH)2 from Ferro-Nickel Slag (페로니켈 슬래그를 이용(利用)한 수산화(水酸化)마그네슘 제조방법(製造方法))

  • Park, Soo Hyun;Chu, Yong Sik;Song, Hun;Lee, Jong Kyu;Seo, Sung Kwan
    • Resources Recycling
    • /
    • v.22 no.1
    • /
    • pp.42-47
    • /
    • 2013
  • Ferro-Nickel slag is a byproduct of Ferro-Nickel manufacturing process. Ferro-Nickel slag mostly discarded or used as aggregates despite having useful ingredients such as magnesium oxide and silicon oxide. This study tried to extract process for Mg ion using $H_2SO_4$ solution. And remove impurities and get high purity $Mg(OH)_2$ using NaOH. Mg ion was extracted with the Fe ion and other Ferro-Nickel slag composition by $H_2SO_4$ solution. It is important to control the pH because remove impurities and obtain high-purity $Mg(OH)_2$. The impurities were removed by precipitation of the hydroxides. After this process, we added NaOH and high-purity $Mg(OH)_2$ was obtained.

High Frequency Simulations for Meander type inductors on the MgO and $Al_2O_3$ substrates (산화마그네슘 기판과 산화알루미늄 기판을 이용한 Meander 형태의 인덕터의 고주파 시abf레이션)

  • Ham, Yong-Su;Kim, Sung-Hun;Kang, Ey-Goo;Koh, Jung-Hyuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.04b
    • /
    • pp.69-71
    • /
    • 2009
  • Meander 형태의 인덕터를 각각 산화마그네슘 (MgO)기판과 산화 알루미늄 ($Al_2O_3$) 기판 위에 구현하여 고주파 특성을 구조 시뮬레이션을 통해 연구하였다. 고주파 시뮬레이션을 통해서 적절한 구조의 meander 형태의 인덕터를 선정하여 시뮬레이션을 수행하였다. 시뮬레이션시 사용된 알루미늄 상부전극은 길이 282 nm, 폭 45 nm, 두께 100 nm, 간격은 15 nm의 구조 였으며, 5, 7, 9, 11, 13턴의 meander 형태 인덕터 소자들을 이용하여 고주파 수동소자 응용을 위한 고주파 구조 시뮬레이션을 50 MHz에서부터 30 GHz까지 수행하였다. 주파수에 따른 인덕턴스와 품질계수를 등가회로를 이용하여 계산하였다. 시뮬레이션으로부터 자기공진주파수 (SRF, self resonance frequency)가 인덕터의 턴 수가 증가함에 따라 저주파 영역으로 이동하는 것을 확인하였고, 고주파 시뮬레이션 결과에서 산란 매개변수 (S-parameter, $S_{21}$)로부터 인덕턴스와 품질계수를 추출해내었다.

  • PDF

An Investigation into Ultrasonic Flotation Separation of Spent MgO-C Refractories Using Acetic Acid (아세트산을 활용한 폐 마그카본(MgO-C) 내화물의 초음파 부상 분리에 관한 연구)

  • Yunki Byeun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.40-46
    • /
    • 2024
  • A novel approach is presented to address issues associated with the use of strong acidic solutions for the leaching of magnesium oxide (MgO) from spent magnesia-carbon refractories. An ultrasonic flotation and separation process is employed, with a mildly acidic solvent, acetic acid, used to selectively chelate MgO from the spent refractories. When using 2 M acetic acid as a solvent, the recovery of the graphite exhibited 99.7 % with high purity of 72.7 %, showing a significant improvement compared to using water as the solvent. Furthermore, the technology presented in this study offers a method for producing magnesium acetate through the reaction of MgO in spent refractory with acetic acid, providing a means for the purification and separation of graphite.

Study on Synthesis of Pine Leaf Extract Intercalated Mg-Phyllosilicate Sandwich Nanoparticles and Antimicrobial Activity against Cutaneous Microorganisms (솔잎 추출물이 삽입된 마그네슘-층상규산염 샌드위치 나노입자의 합성과 피부 상재균에 대한 항균 특성에 관한 연구)

  • Kim, Seong Yeol;Choi, Yoo-Sung
    • Applied Chemistry for Engineering
    • /
    • v.30 no.2
    • /
    • pp.254-259
    • /
    • 2019
  • In this study, we synthesized the pine leaf extract intercalated layered Mg-phyllosilicate nanoparticles (PLE/MgP) via one-pot synthesis. MgP was successfully synthesized with the octahedral and tetrahedral structure by XRD analysis and a gap of interlayer distance (d-spacing) between MgP sheets by the intercalation of PLE was confirmed. As a result of the investigation of antimicrobial activity against cutaneous microorganisms by the minimum inhibitory concentration (MIC) and bactericidal concentration (MBC) analyses, the antimicrobial activity of PLE/MgP was more improved than that of MgP or PLE. The prepared sandwich-structured PLE/MgP organic/inorganic hybrid materials will be useful in the field of numerous applications containing cosmetic and biomedical materials.

Comparison of Pretreatment Method for the Enhancement of CO2 Mineralogied Sequestration using by Serpentine (이산화탄소 광물고정화 효율 증진을 위한 사문석의 전처리 방법의 비교)

  • Jang, Na-Hyung;Park, Sung-Kwon;Shim, Hyun-Min;Kim, Hyung-Taek
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.24-28
    • /
    • 2010
  • Since the reaction of mineral fixation proceeds with a very slow rate, the pretreatment method to increases the rate of carbonation reaction should be required. To increase the reactivity of serpentine with $CO_{2}$, two pretreatment methods are performed in this study. The heat treatment is done at $630^{\circ}C$. A heat-treated serpentine shows that the strength of -OH has a lower peak in FT-IR spectrum. Chemical pretreatment is the method of leaching of magnesium from serpentine using sulfuric acid at $75^{\circ}C$ for 1 h. Because the protonation of the oxygen atoms polarizes and weakens the Mg-O-Si bond, the removal of magnesium atoms from the crystal lattice was facilitated. After performing the pre-treatment of serpentine, $CO_{2}$ fixation experiments are performed with treated serpentine in the batch reactor. Heat-treated serpentine is converted into 43% magnesite conversion, whereas untreated serpentine has 27% of magnesite conversion. Although the results of the heat-pretreatment are encouraging, this method is prohibited due to excessive energy consumption. Furthermore chemical pretreatment serpentine routes have been proposed in an effort to avoid the cost prohibitive heat pretreatment, in which the carbonation reaction was conducted at 45 atm and $25^{\circ}C$. Chemical-treated serpentine, in particularly is corresponded to a conversion of 42% of magnesite compared to 24% for the un-treated serpentine.