DOI QR코드

DOI QR Code

Recent Trends and Future Perspectives of the Magnesium Recovery based on Electrolysis

전해 기반 마그네슘 회수 기술의 관련 동향 및 향후 전망

  • Sang-hun Lee (Dept. of Environmental Engineering, Keimyung University)
  • 이상훈 (계명대학교 환경공학과)
  • Received : 2024.04.08
  • Accepted : 2024.04.25
  • Published : 2024.04.30

Abstract

The electrolysis for extracting magnesium from seawater or brine primarily involves recovery of magnesium via precipitation as the form of magnesium hydroxide. The technology is classified into cation-exchange membranes (CEM), anion-exchange (AEM) membranes, electrodialysis, and membraneless methods. Recent research has focused on enhancing the efficiency and selectivity of magnesium recovery from seawater or brine containing magnesium, with expectations of effective magnesium recovery even with normal seawater. In a future, the optimization of the selective and efficient recovery of magnesium and various valuable substances through long-term operation of scaled-up systems is crucial with enhancing economic and environmental viability. It is essential to realistically estimate operational costs considering the membrane's lifespan and replacement cycle. Also, detailed and practical process models should be developed based on monitoring data on various factors.

해수나 염수에서 마그네슘을 추출하는 전해 반응은 마그네슘 이온을 주로 수산화마그네슘 형태로 마그네슘을 침전-회수하는 기술로, 양이온교환막, 음이온교환막, 전기투석, 비막 방식 등으로 분류된다. 최근 연구는 마그네슘 함유 해수나 염수를 사용하여 마그네슘의 회수 효율성 및 선택성 증진에 집중되며, 향후 일반 해수를 사용할 경우에도 효과적인 마그네슘 회수가 기대된다. 향후에는, 스케일업 시스템의 장기운전을 통해 마그네슘 및 다양한 유가물질에 대한 선택적 고효율 회수의 최적화와 더불어 경제성 및 환경성을 증진하는 것이 중요하다. 함께 막의 수명 및 교체주기를 고려하여 운전비용을 현실적으로 산정해야 하며, 다양한 인자에 대한 모니터링 데이터를 기반으로 상세하고 실용적인 공정 모델이 필요하다.

Keywords

Acknowledgement

본 연구는 한국지질자원연구원 주요 사업인 '국내 부존 바나듐(V) 광물자원 선광/제련/활용기술 개발(GP2020-013, 21-3212-1)'과제의 일환으로 수행되었다.

References

  1. Fontana, D., Forte, F., Pietrantonio, M., et al., 2023 : Magnesium recovery from seawater desalination brines: a technical review, Environment, Development and Sustainability, 25, pp.13733-13754. 
  2. British Geological Survey, Mineral profiles - Magnesium. https://nora.nerc.ac.uk/id/eprint/534460/, March 13, 2024. 
  3. European Commission, Report on critical raw materials for the EU. Critical raw materials profiles, Ref. Ares, 3396873 -14/08/2015. https://rmis.jrc.ec.europa.eu/uploads/crm-report-on-critical-raw-materials_en.pdf, March 14, 2024. 
  4. Duhnen, S., Betz, J., Kolek, M., et al., 2020 : Toward green battery cells: Perspective on materials and technologies, Small Methods, 4, 2000039, pp.1-38  https://doi.org/10.1002/smtd.202000039
  5. USGS(United States Geological Survey), Magnesium compounds data sheet, Mineral Commodity Summaries, 6. https://pubs.usgs.gov/periodicals/mcs2020/mcs2020-magnesium-compounds.pdf, March 14, 2024. 
  6. USGS(United States Geological Survey), Minerals Yearbook, Magnesium(Advance Release). https://www.usgs.gov/centers/national-minerals-information-center/magnesium-compounds-statistics-and-information, March 14, 2024. 
  7. USGS(United States Geological Survey), Mineral Commodity Summaries. https://pubs.usgs.gov/publication/mcs2024, March 14, 2024. 
  8. Intrtec Products Blog. https://medium.com/intratec-products-blog/magnesium-hydroxide-prices-latest-historicaldata-in-several-countries-6fae37733f1e, April 24, 2024. 
  9. Sano, Y., Hao, Y. and Kuwahara, F., 2018 : Development of an electrolysis based system to continuously recover magnesium from seawater, Heliyon, 4(11), e00923, pp.1-20.  https://doi.org/10.1016/j.heliyon.2018.e00923
  10. Pan, X.-J., Dou, Z.-H., Meng, D.-L., et al., 2020 : Electrochemical separation of magnesium from solutions of magnesium and lithium chloride, Hydrometallurgy, 191, 105166. 
  11. Pan, X.-J., Dou, Z,-H., Zhang, T.-A., et al., 2020 : Separation of metal ions and resource utilization of magnesium from saline lake brine by membrane electrolysis, Separation and Purification Technology, 251(15), 117316. 
  12. Xie, H., Wang, Y., Chu, W., et al., 2014 : Mineralization of flue gas CO2 with coproduction of valuable magnesium carbonate by means of magnesium chloride, Chinese Science Bulletin, 59(23), pp.2882-2889.  https://doi.org/10.1007/s11434-014-0388-1
  13. Xie, H., Liu, T., Hou, Z., et al. 2015 : Using electrochemical process to mineralize CO2 and separate Ca2+/Mg2+ ions from hard water to produce high value-added carbonates, Environmental Earth Sciences, 73, pp.6881-6890.  https://doi.org/10.1007/s12665-015-4401-z
  14. Ghyselbrecht, K., Sansen, B., Monballiu, A., et al., 2019 : Cationic selectrodialysis for magnesium recovery from seawater on lab and pilot scale, Separation and Purification Technology, 221(15), pp.12-22.  https://doi.org/10.1016/j.seppur.2019.03.079
  15. Lalia, B.S., Khalil, A., Hashaikeh, R., 2021 : Selective electrochemical separation and recovery of calcium and magnesium from brine, Separation and Purification Technology, 264, 118416. 
  16. Kwon, T., Lim, Y., Cho, J., et al., 2022 : Antioxidant technology for durability enhancement in polymer electrolyte membranes for fuel cell applications, Materials Today, 58, pp.135-163.  https://doi.org/10.1016/j.mattod.2022.06.021
  17. Orlewski, P. M. and Mazzotti, M., 2020 : Modeling of Mixing-Precipitation Processes: Agglomeration, Chemical Engineering Technology, 43(6), pp.1029-1039.  https://doi.org/10.1002/ceat.201900551
  18. Yuan, Q., Lu, Z., Zhang, P., et al., 2015 : Study of the synthesis and crystallization kinetics of magnesium hydroxide, Materials Chemistry and Physics, 162, pp.734-742. https://doi.org/10.1016/j.matchemphys.2015.06.048