• Title/Summary/Keyword: 링크관절

Search Result 45, Processing Time 0.023 seconds

A study on the straight cruise of fish robot according to biological mimic (생물학적 모방에 따른 물고기 로봇의 직진유영 연구)

  • Park, Jin-Hyun;Lee, Tae-Hwan;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.8
    • /
    • pp.1756-1763
    • /
    • 2011
  • This paper was researched the straight cruise of fish robot according to biological mimic, and it was compared the proposed method which was considered up to 7th order components in fourier series of Liu's tail motion function with the approximate method which was used general sine function by simulation. If fish robot has a large number of links and if the length of tail link is long. The end rotary joint trajectory of tail motion function generally is different from sine function. Therefore The approximate method which expresses tail motion trajectories as fundamental component in fourier series has a problem. Through the computer simulation, the proposed method showed 10% excellent propulsion and velocity than the conventional method.

Sensor-Based Path Planning for Planar Two-identical-Link Robots by Generalized Voronoi Graph (일반화된 보로노이 그래프를 이용한 동일 두 링크 로봇의 센서 기반 경로계획)

  • Shao, Ming-Lei;Shin, Kyoo-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.12
    • /
    • pp.6986-6992
    • /
    • 2014
  • The generalized Voronoi graph (GVG) is a topological map of a constrained environment. This is defined in terms of workspace distance measurements using only sensor-provided information, with a robot having a maximum distance from obstacles, and is the optimum for exploration and obstacle avoidance. This is the safest path for the robot, and is very significant when studying the GVG edges of highly articulated robots. In previous work, the point-GVG edge and Rod-GVG were built with point robot and rod robot using sensor-based control. An attempt was made to use a higher degree of freedom robot to build GVG edges. This paper presents GVG-based a new local roadmap for the two-link robot in the constrained two-dimensional environment. This new local roadmap is called the two-identical-link generalized Voronoi graph (L2-GVG). This is used to explore an unknown planar workspace and build a local roadmap in an unknown configuration space $R^2{\times}T^2$ for a planar two-identical-link robot. The two-identical-link GVG also can be constructed using only sensor-provided information. These results show the more complex properties of two-link-GVG, which are very different from point-GVG and rod-GVG. Furthermore, this approach draws on the experience of other highly articulated robots.

Joint and Link Module Geometric Shapes of Modular Manipulator for Various Joint Configurations (다양한 관절 구성을 위한 모듈라 매니퓰레이터의 관절 및 링크 모듈 형상 도출)

  • Hong, Seonghun;Lee, Woosub;Lee, Hyeongcheol;Kang, Sungchul
    • The Journal of Korea Robotics Society
    • /
    • v.11 no.3
    • /
    • pp.163-171
    • /
    • 2016
  • A modular manipulator in serial-chain structure usually consists of a series of modularized revolute joint and link modules. The geometric shapes of these modules affect the number of possible configurations of modular manipulator after assembly. Therefore, it is important to design the geometry of the joint and link modules that allow various configurations of the manipulators with minimal set of modules. In this paper, a new 1-DoF(degree of freedom) joint module and simple link modules are designed based on a methodology of joint configurations using a series of Rotational(type-R) and Twist(type-T) joints. Two of the joint modules can be directly connected so that two types of 2-DoFs joints could be assembled without a link module between them. The proposed geometries of joint and link modules expand the possible configurations of assembled modular manipulators compared to existing ones. Modular manipulator system of this research can be a cornerstone of user-centered markets with various solution but low-cost, compared to conventional manipulators of fixed-configurations determined by the provider.

Trajectory Recognition and Tracking for Condensation Algorithm and Fuzzy Inference (Condensation 알고리즘과 퍼지 추론을 이용한 이동물체의 궤적인식 및 추적)

  • Kang, Suk-Bum;Yang, Tae-Kyu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.402-409
    • /
    • 2007
  • In this paper recognized for trajectory using Condensation algorithm. In this pater used fuzzy controller for recognized trajectory using fuzzy reasoning. The fuzzy system tract to the three-dimensional space for raw and roll movement. The joint angle ${\theta}_1$ of the manipulator rotate from $0^{\circ}\;to\;360^{\circ}$, and the joint angle ${\theta}_2$ rotate from $0^{\circ}\;to\;180^{\circ}$. The moving object of velocity display for recognition without error using Condensation algorithm. The tracking system demonstrated the reliability of proposed algorithm through simulation against used trajectory.

Development of the Robot Manipulator for Kinematies (기구학적 분석을 이용한 로봇 매니퓰레이터 개발)

  • Min, Byeong-Ro;Lee, Dae-Weon
    • Journal of Bio-Environment Control
    • /
    • v.13 no.1
    • /
    • pp.1-7
    • /
    • 2004
  • This study is kinematics for the manipulator development of cucumber harvesting. A theory value was verified by repeated error measurement after the forward kinematics or inverse kinematics analysis of manipulator. Manipulator is consisted of one perpendicular link and two revolution link. The transformation of manipulator can be valued by kinematics using Denavit-Hartenberg parameter. The value of inverse kinematics which is solved by three angles faction shows two types. Repeated errors refered maximum 2.60 mm, 2.05mm and 1.55 mm according to X, Y, Z axis. In this study, the actual coordinates of maximum point and minimum point were agreement in the forward kinematics or inverse kinematics. The results of repeated error measurement were reflect to be smaller compared to a diameter of cucumber. measurement errors were determined by experimented errors during the test. For reducing errors of manipulator and improving work efficiency, the number of link should be reduced and breeding and cultural environment should be considered to reduce the weight and use the hard stuff. The velocity of motor for working should be considered, too.

Structure Analysis of an Exoskeleton with a Torsion Bar Gravity Compensator (비틈 봉 중력보상기를 적용한 외력증강기 구조해석)

  • Choi, Hyeong-Sik;Lee, Dong-Jun;Jo, Jong-Rae
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.36 no.4
    • /
    • pp.467-475
    • /
    • 2012
  • In this paper, a technical method of reducing torque load of exoskeleton device, with using of a gravity compensator based on a torsion bar, for human leg joints, is proposed. Design and structure analyses and also performance test were performed to estimate and to measure the characteristics of the torsion bar. On the basis of design and structure analysis, a new light and compact exoskeleton device has been developed. For the purpose of lightening and optimizing thickness of the links, FEM analysis has been performed.

Design of 4 joints 3 Link Biped Robot and Its Gaits (4관절 3링크 2족 로봇과 걸음새에 관한 연구)

  • Kim, Sung-Hoon;Oh, Jun-Ho;Lee, Ki-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2000.04a
    • /
    • pp.523-528
    • /
    • 2000
  • In this paper, the new type biped walking robot which is composed of the minimum number or links just for walking and its appropriate gaits are proposed. The proposed new gaits for this robot are four-crossing, crawling, standing and turning gait. In designing the biped robot we propose the Performance Index which means the needed torque per a moving distance and generate foot trajectories by $3^{rd}$ order spline Interpolation. Among those, numerically we find the optimal conditions which minimize the Performance Index. Dynamically stable walking of the biped robot is realized by satisfying the stability condition of ZMP(zero moment point), which is related to maintaining the ZMP within the region of the supporting foot during the s1n91e leg support phase. We determine the region of mass center from the stability condition of ZMP and plan references which track the mass conte. trajectory of constant velocity. Finally we implement the gaits statically tracking the planned trajectories using PD control method.

  • PDF

Development of a Modified Exoskeletal Linkage Type Instrument for 3-D Motion Measurement of the Human Knee Joint (무릎관절의 3차원 회전량 측정을 위한 개선된 외골격 링크장치 형태의 측정기구 개발)

  • 김영은;안정호
    • Journal of Biomedical Engineering Research
    • /
    • v.15 no.3
    • /
    • pp.289-294
    • /
    • 1994
  • A new type of electrogoniometer to measure the three dimensional motion of the human knee joint was developed. This instrument is composed of six potentiometers: four arranged for two universal joints, one for pin joint, and one for axial rotation measurement. The voltage change in six potentiometers were collected through A/D converter for acquisition, storage and analysis. With a developed instrument, gait analysis was performed. Compared to earlier developed triaxial type goniometer, new instrument shows its convenience in application and accuracy in measurement.

  • PDF

Pole-Placement Self-Tuning Control for Robot Manipulators in Task Coordinates (작업좌표에서 로보트 매니퓰레어터에 대한 극점배치 자기동조 제어)

  • 양태규;이상효
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.38 no.3
    • /
    • pp.247-255
    • /
    • 1989
  • This paper proposes an error model with integral action and a pole-place-ment self-tuning controller for robot manipulators in task coordinates. The controller can reject the offset due to any load disturbance without a detailed description of the robot dynamics. The error model parameters are estimated by the recursive least square identification algorithms, and controller parameters are determined by the pole-placement method. A computer simulation study has been conducted to demonstrate the performance of the proposed control system in task coordinates for a 3-joint and 2-link spatial robot manipulator with payload.

The Development of Tele-operated Heavy Duty Robot System (고하중용 원격작업 로봇시스템 개발)

  • Seo, Yong-Chil;Kim, Chang-Hoi;Cho, Jai-Wan;Choi, Young-Soo;Kim, Seung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2004.05b
    • /
    • pp.166-168
    • /
    • 2004
  • 근래에 무인 자동화기술의 발달과 마이크로프로세서 기술의 혁신적인 성장에 힘입어 일반산업현장에서 사용되고 있는 로봇은 복잡하고 다양한 작업이 요구되는 비제조업분야로 그 적용분야가 확장되고 있다. 그 대표적인 분야를 들자면 방사능 지역과 같은 위험한 환경에서의 작업, 우주공간이나 심해에서의 작업, 활선 작업과 같이 사람이 접근하기 어려운 곳에서 인간을 대신하는 작업 등이 있다. 이와 같이 사람이 접근하기 어려운 지역에서 인간을 대신하여 작업을 수행할 수 있는 원격작업 로봇시스템을 개발하였다. 개발된 로봇은 6 자유도를 갖는 수평다관절 유압구동형 조작기로써 로봇의 운반 및 설치가 용이하도록 제 1 링크의 분리가 가능하도록 설계하였다. 로봇의 제어기는 전체 제어기를 통괄하는 1 개의 마스터 CPU 및 3 개의 제어보드로 구성되며 이들은 VME 버스를 이용하여 데이터를 전송한다. 로봇의 관리제어시스템은 그래픽워크스테이션을 이용하여 구성하였으며 로봇의 작업상황을 실시간으로 애니메이션하여 작업자에게 원격현장감을 제공하고 작업효율의 향상시켰다.

  • PDF