• Title/Summary/Keyword: 리브 구조체

Search Result 25, Processing Time 0.169 seconds

The Effect of the Fiber Volume Fraction Non-uniformity and Resin Rich Layer on the Rib Stiffness Behavior of Composite Lattice Structures (섬유체적비 불균일 및 수지응집층이 복합재 격자 구조체 리브의 강성도 거동에 미치는 영향)

  • Kang, Min-Song;Jeon, Min-Hyeok;Kim, In-Gul;Kim, Mun-Guk;Go, Eun-Su;Lee, Sang-Woo
    • Composites Research
    • /
    • v.31 no.4
    • /
    • pp.161-170
    • /
    • 2018
  • Cylindrical composite lattice structures are manufactured by filament winding process. The fiber volume fraction non-uniformity and resin rich layers that can occur in the manufacturing process affect the stiffness and strength of the structure. Through the cross-section examination of the hoop and helical ribs, which are major elements of the composite lattice structure, we observed the fiber volume fraction non-uniformity and resin rich layers. Based on the results of the cross-section examination, the stiffness of the ribs was analyzed through the experimental and theoretical approaches. The results show that the fiber volume fraction non-uniformity and resin rich layers have an obvious influence on the rib stiffness of composite lattice structure.

Analytical Studies on the Steel Plate-Concrete Structures under Compressive Load (압축력을 받는 강판-콘크리트 구조의 해석적 고찰)

  • Choi, Byong Jeong;Han, Hong Soo
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.269-278
    • /
    • 2008
  • The primary object of the paper is to understand the compressive buckling characteristics of steel-concrete structures through the finite element analysis. The buckling pattern, compressive strength and stiffness of the steel plate concrete structures were investigated by the FEM analysis using the variations of B/t ratios and stud pitches. The investigation was focused on steel plate concrete structures with and without ribs placed on the surface of steel plates. The results of the FEM analysis were compared with the previous results from the theoretical equations. Conclusively, the buckling of the steel plate concrete structures occurred in the transverse direction of the loading direction. The stiffness of the steel plate concrete structure with ribs is greater than the one without the stiffened rib. The compressive strength in the FEM analysis is similar to that of JEAG 4681 and it showed 20% greater value than that of the proposed equations.

Optimal Design of Long-fiber Composite Cover Plate with Ribs (리브를 가진 장섬유 복합재료 커버 플레이트의 최적설계)

  • Han, Min-Gu;Bae, Ji-Hun;Lee, Sung-Woo;Chang, Seung-Hwan
    • Composites Research
    • /
    • v.30 no.1
    • /
    • pp.65-70
    • /
    • 2017
  • Carbon fiber reinforced composites have light weight and high mechanical properties. These materials are only applicable in limited shape structure cause by complex curing process and low drapability. To solve this problem, Long Fiber Prepreg Sheet (LFPS) has been proposed. In this research, electric device cover plate was selected and designed by using LFPS. Before the design process, we analyzed the target structure to which the rib structures were applied. And 8-inch tablet PC product was selected. For FE analysis, simple loading and boundary conditions were applied. Stiffness of rib structure was investigated according to the rib pattern and shape changes. Rib pattern and shape were selected based on fixed volume condition analysis results. And uneven rib width model was selected for the best case whose deflection was reduced 6~10% than uniform rib model.

Behavior and Strength of Rib Stiffened SC Wall-slab Connection (리브 보강된 SC구조 벽-바닥 접합부의 거동 및 내력 평가)

  • Park, Joung Hak
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.4
    • /
    • pp.349-359
    • /
    • 2014
  • Until now, wall-slab plate of steel plate concrete has been constructed by joint. But, the shear plate has problems in the workability as well as structural integrity. This study investigates the behavior and strength of rib stiffened SC wall-slab connection. Seven prototype specimens of wall-slab connections were fabricated and tested. the structural safety of the specimens was confirmed through the monotonic loading test. Based on the experimental observations, this study propose the strength formula of the joint was proposed. To enhance the reliability of the proposed strength formula, analytical verification was performed through inelastic finite element analysis. Effect of parameters, such as, load point, friction coefficient, on the joint strength was examined. The proposed formula yields a conservative value for most cases.

Compression Test of Subelement and Tension Test of Hoop Ring for Stiffness Evaluation of Conical Composite Lattice Structures (콘형 복합재 격자 구조의 강성 평가를 위한 Subelement의 압축 시험 및 후프 링의 인장 시험)

  • Jeon, Min-Hyeok;Kong, Seung-Taek;No, Hae-Ri;Kim, In-Gul;Lee, Sang-Woo
    • Composites Research
    • /
    • v.33 no.3
    • /
    • pp.169-175
    • /
    • 2020
  • The compression and tension test were performed to evaluate the stiffnesses of the conical composite lattice structures and results of test were compared with finite element analysis results. Because of difficulty to perform simple tension and compression test due to conical shape, suitable specimens and jig for test were made. Subelements extracted from the structure were prepared for compression test. Compression test of subelement was performed and compressive strains in fiber direction were measured. Compressive stiffness of the helical rib was verified by finite element analysis results. For stiffness of hoop rib, hoop ring specimens were extracted from the structure. Tension test of hoop ring specimen was performed to apply bending deformation to hoop rib. Stiffness of hoop rib was verified by finite element model considering various fiber volume fraction in thickness direction.

An Experimental Study on the Behavior of Steel Plate-Concrete Wall with Vertical Ribs (수직 보강된 SC 벽체의 거동에 대한 실험적 연구)

  • Lee, Seung Joon;Choi, Byong Jeong;Kim, Tae Kyoung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.3
    • /
    • pp.277-287
    • /
    • 2009
  • The objective of this study was to experimentally investigate the structural behavior of steel plate concrete walls with vertical ribs (SSC walls), to compare the experimental results with the currently applied evaluation equations, and to obtain information that would be useful in the development of design equations for SSC walls. SSC test specimens that were subjected to in plane shear forces and bending moments were fabricated and tested. The experimental results show that the effect of vertical ribs on the structural behavior of SSC walls may be neglected, and that the confinement effect of concrete on the steel plates on both sides of the walls was negligible. The comparison of the experimental results with the evaluation equations showed that the structural behavior of SSC walls under shear control is close to that of the evaluation equations, but that the behavior of SSC walls under larger bending moments is not very close to that of the evaluation equations. The current evaluation equations for USC walls may be applied to the design of SSC walls because the structural walls of nuclear power plants are not subjected to large in plane bending moments.

Evaluation of Fatigue Strength in Scallop at Field Bolted Joints of Longitudinal Rib and Deck Plate in Orthotropic Steel Decks (강바닥판 데크플레이트와 종리브 현장연결 스캘럽부의 피로강도 평가)

  • Choi, Dong Ho;Choi, Hang Yong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.683-690
    • /
    • 2002
  • Static and fatigue tests were performed to evaluate fatigue strength in scallop at field bolted joints of longitudinal rib and deck plate in orthotropic steel decks. Numerical parametric studies using finite elemtn analysis were also conducted to show the influence of parameters such as length and radius of scallop, and thickness of deckplate on the stress concentration at the scallop. In the low stress level, fatigue tests yielded cracks at the scallop while in the high stress level, catastrophic failure of longitudinal rib occurred following the failure of handhole cover plate. Fatigue strength was compared with JSSC specification and the predicted S-N curves using Shigley and Juvinall methods, and a satisfactory result was obtatined.

Experimental Study and Comparison of Analysis Results on Structural Method of Prestressed Concrete Slab Using Light Hybrid rib to Long Span (장스팬형 경량복합리브 PSC슬래브 구조공법에 관한 비교분석 및 실험적 연구)

  • Shim, Namju;Oh, Jungkeun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.18 no.5
    • /
    • pp.3-10
    • /
    • 2017
  • The HBS slab is a method in which a lightweight sieve is installed on top of the psc slab and two ribs of the neighboring psc slab are combined with ribs formed by the site concrete to act as a single member on the same axis. The purpose of this study is to implement the performance comparison with the existing method through the experimental study on the PSC slab method. In this study, the HBS slab was developed as a method to improve the limit of the existing method and the performance comparison with the existing method is tried to verify its superiority. The comparison of the structural performance with the existing method is carried out through the experimental study of the HBS slab, and the structural performance against the bending performance and shear and the bonding performance between the pc beam and the hbs slab are examined and compared with the existing method through the theoretical method.

Experimental Study on Structural Behavior of Inverted Multi-Tee Precast Slabs Manufactured by Slipformer (슬립폼 방식으로 제작된 역리브 프리캐스트 슬래브의 구조거동에 대한 실험적 연구)

  • Choi, Seokdong;Kim, Min-Seok;Kim, Kang Su;Hong, Sung Yub;Han, Sun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.80-86
    • /
    • 2020
  • In the fabrication process of inverted multi-tee (IMT) slabs, concrete has to be poured twice due to its shape, which is a huge disadvantage as a precast member. To overcome this, a new technique for manufacturing IMT slabs using a slipform method has been recently developed. In this study, flexural and shear tests were carried out to investigate the structural performances of inverted multi-tee (IMT) slabs manufactured using slipform method. To this end, one flexural specimen and two shear specimens with topping concrete were fabricated, and their failure modes and crack patterns, and the slips that occurred between the precast slab and topping concrete were measured and analyzed in detail. In addition, the flexural and shear strengths of the specimens were evaluated by utilizing the structural design code, and a shear strength estimation method, which is suitable for composite IMT slabs with different concrete properties, was proposed for practical design. The IMT slab satisfied the nominal flexural strength calculated by the current design code, and the proposed method provided a good estimation of the shear strength of the specimens.

Numerical Analysis Study for Optimal Design Method on Intersection between Longitudinal and Transversal Rib in Orthotropic Steel Deck Bridge (강바닥판교의 종리브-횡리브 교차연결 상세변화에 따른 최적설계방안의 수치해석 연구)

  • 배두병;공병승
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.3
    • /
    • pp.333-340
    • /
    • 2004
  • The use of the othotropic steel deck is steadily increased due to the advance of the technology in the steel bridges which recently have been longer. But the othotropic steel deck bridge is the structure that is very fragile to the fatigue, especially, the fatigue crack at the cross of the longitudinal rib and transversal rib is one of the biggest problems that othotropic steel deck bridges have. The causes of these fatigue cracks come from the secondary stress on out-plane behavior of transversal rib. In this study, we conducted the experiment to find the optimal details to improve fatigue strength on intersection between longitudinal rib and transversal rib in the othotropic steel deck bridge through numerical analysis using the experiment of the fatigue in the 3-dimensional real structure and program LUSAS. As a result of study, it is showed that the details of the korean standard section attached with a curved bulkhead plate is the most profitable. And, it is indicated that the stress which is generated when the reform improved section by parametic study can be reduced by about 50% at most or more. Along with the reduced stress and the longer interval between transversal ribs(G=400), the decreased steel amount by 4% and the shortened welding length by 34% make it possible to produce the othotropic steel deck bridge which is strong against fatigue.