• 제목/요약/키워드: 리뷰데이터

검색결과 328건 처리시간 0.025초

감성 분석 화장품 사용자 리뷰에 대한 속성기반 감성분석 (Aspect-based Sentiment Analysis on Cosmetics Customer Reviews)

  • 정희원;정영섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2024년도 제69차 동계학술대회논문집 32권1호
    • /
    • pp.13-16
    • /
    • 2024
  • 온라인상에 인간의 감성을 담은 리뷰 데이터가 꾸준히 축적되어왔다. 이 텍스트 데이터를 분석하고 활용하는 일은 마케팅에 있어서 중요한 자산이 될 것이다. 이와 관련된 Aspect-Based Sentiment Analysis(ABSA) 연구는 한글에 있어서는 데이터 부족을 이유로 거의 선행연구가 없는 실정이다. 본 연구에서는 최근 공개된 데이터 셋을 바탕으로 하여 화장품 도메인에 대한 소비자들의 리뷰 텍스트와 사전 라벨링 된 속성, 감성 극성을 기반으로 ABSA를 진행한다. Klue RoBERTa base 모델을 활용하여 데이터를 학습시키고, Python Kiwipiepy 등으로 전처리한 결과를 대시보드로 시각화하여 분석하기 쉬운 환경을 마련하는 방법을 제시한다.

  • PDF

의미연결망 분석을 활용한 영화 리뷰 시각화 (A Visualization of Movie Reviews based on a Semantic Network Analysis)

  • 김슬기;김장현
    • 한국정보통신학회논문지
    • /
    • 제23권1호
    • /
    • pp.1-6
    • /
    • 2019
  • 본 연구는 <네이버 영화> 페이지의 리뷰 데이터를 수집하여, 출현 빈도가 높은 단어를 중심으로 영화 관람객의 반응을 시각화하는 작업을 수행하였다. 이를 위해 총 6편의 영화를 선정하여 데이터 수집 및 정제과정을 거쳤으며, 의미연결망 분석(Semantic network analysis)을 활용하여 단어 간 관계성을 파악하고자 하였다. 데이터 시각화 작업에는 UCINET과 함께 패키지화된 NetDraw가 사용되었다. 본 연구의 시사점은 문장으로 작성된 영화 관람객의 리뷰를 키워드 중심으로 시각화하여, 소비자들의 반응을 한 눈에 확인하는 리뷰 인터페이스 구현이 가능한지 탐색하였다는 점이다. 본 연구를 통해 영화 리뷰를 구성하는 키워드를 시각화하고, 리뷰 내용에서 영화별 특성의 차이를 확인하였다는 점에서 본 연구가 의미를 가진다고 하겠다. 후속 연구는 보다 많은 영화의 리뷰를 활용할 필요성이 제기되며, 각 영화별 리뷰의 수도 비슷한 양으로 맞추어 연구에 활용해야 할 것이다.

Topological Data Analysis 기법을 활용한 호텔 리뷰데이터의 감성 키워드 기반 호텔 관계망 구축 (Identification of sentiment keywords association-based hotel network of hotel review using mapper method in topological data analysis)

  • 전예슬;김정재
    • 응용통계연구
    • /
    • 제33권1호
    • /
    • pp.75-86
    • /
    • 2020
  • 호텔 리뷰 데이터에는 소비를 이끈 구매 요인, 호텔에 대한 장점 및 단점 등 다양한 정보를 추출할 수 있다. 특히, 리뷰 데이터의 감성 키워드는 소비자들이 호텔에 관해 이야기하고 있는 평가 및 반응 등의 주요 내용을 파악하는 데 도움을 준다. 하지만 많은 양의 리뷰 데이터를 소비자가 직접 살펴보기에는 효율성이 떨어진다. 이를 위해 리뷰 데이터를 요약하는 기술이 요구된다. 본 연구에서는 기존의 감성 키워드 관계망을 구축하는 연구에 더 나아가, 이와 관련된 호텔에 대한 정보까지 동시에 제공하고자 한다. 이를 위해 호텔 도메인에 적합한 감성 키워드 사전을 구축하고, 이를 바탕으로 위상학적 데이터 분석 기반의 맵퍼(topological data analysis based mapper)를 통해서 감성 키워드 기반의 호텔 관계망을 구축한다. 구축된 관계망을 통해 유사한 감성을 기반으로 연결된 호텔들을 살펴볼 수 있으며 동시에, 호텔에 대한 감성 정보도 파악할 수 있다. 이러한 리뷰 요약 정보는 사용자들에게 호텔들에 대한 요약된 감성 평가를 제공하며, 호텔 마케팅 및 전략 기획팀에 분석 대상에 대한 소비자들의 인식을 파악할 수 있도록 돕는다.

리뷰분석을 통한 온라인교육자 신뢰도 파악 자동화 시스템 설계 (Designing an automated system to grasp the reliability of online educators through review analysis)

  • 이기훈;문남미
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2018년도 추계학술발표대회
    • /
    • pp.596-598
    • /
    • 2018
  • 본 논문은 온라인 교육매칭 플랫폼의 교육자에 대한 신뢰도 파악을 위한 리뷰분석 자동화 시스템을 설계한 논문이다. 웹 크롤링을 통해 비정형 데이터인 교육자에 대한 리뷰를 수집 및 파싱을 통해 데이터 베이스화 한다. 수집한 리뷰 데이터와 SO-PMI를 이용해 온라인 교육자 신뢰도 파악을 위한 맞춤형 감성사전을 구축하고자 한다. 구축한 감성사전을 이용해 리뷰를 수치화해 교육자와 피교육자 매칭 시신뢰성 향상에 도움을 주고자 한다.

감성 분석 기반의 제품 평판 마이닝 (Product reputation mining based on sentiment analysis)

  • 송인환;한진주;온병원
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2019년도 제31회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.429-433
    • /
    • 2019
  • 스마트폰 보급의 확산으로 제품 구매 시 웹 사이트 및 SNS를 이용하여 제품 리뷰를 참고하는 소비자들이 증가하고 있다. 전자 상거래 사이트의 제품 리뷰는 구매 예정자들에게 유용한 정보로 활용되곤 한다. 하지만 구매 예정자가 직접 제품에 대한 리뷰 데이터를 찾아 전체 내용을 일일이 읽고 분석해야하기 때문에 시간이 오래 걸릴뿐만 아니라 가공되지 않는 데이터가 줄 수 있는 정보는 한정적이다. 또한 이러한 리뷰들은 상품의 특징을 파악하기에도 어려움이 있다. 본 논문에서는 제품의 주요 이슈를 추출하고 주요 이슈에 대한 감성 분석과 감성 요약을 통해 제품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 휴대폰 제품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 제품의 리뷰 데이터를 분석할 필요 없이 제품의 주요 이슈와 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.

  • PDF

문장 생성 모델 학습 및 관광지 리뷰 데이터를 활용한 관광지 분류 기법 (Tourist Attraction Classification using Sentence Generation Model and Review Data)

  • 문준형;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2023년도 추계학술발표대회
    • /
    • pp.745-747
    • /
    • 2023
  • 여러 분야에서 인공지능 모델을 활용한 추천 방법들이 많이 사용되고 있다. 본 논문에서는 관광지의 대중적이고 정확한 추천을 위해 GPT-3 와 같은 생성 모델로 생성한 가상의 리뷰 문장을 통해 KoBERT 모델을 학습했다. 생성한 데이터를 통한 KoBERT 의 학습 정확도는 0.98, 테스트 정확도는 0.81 이고 실제 관광지별 리뷰 데이터를 활용해 관광지를 분류했다.

온라인 리뷰어의 과소보고 편향에 관한 실증 연구: 온라인 게임 플랫폼 스팀을 중심으로 (An Empirical Study on the Under-reporting Bias of Online Reviewers: Focusing on Steam Online Game Platform)

  • 장주혁;백현미;이새롬;배성훈
    • 지식경영연구
    • /
    • 제23권2호
    • /
    • pp.229-251
    • /
    • 2022
  • 온라인 리뷰는 제품에 대한 이전 구매자들의 경험을 제공함으로써 다른 소비자들이 합리적인 구매 의사결정을 하는데 유용하게 활용되고 있다. 하지만 온라인 리뷰가 제품의 질과 특성을 정확히 반영하지 않고 편향되어 작성된다면 온라인 리뷰를 더이상 신뢰할 수 없는 문제가 발생한다. 따라서, 본 연구에서는 대표적인 온라인 리뷰의 편향 중 하나인 과소보고 편향의 특성을 실증 데이터를 통해 살펴보고자 한다. 구체적으로 온라인 게임 플랫폼인 스팀의 14,165개의 리뷰 데이터를 활용하여 과소보고하는 성향을 지니는 리뷰어의 특성을 살펴보고자 하였다. 분석결과, 과소보고하는 리뷰어는 주로 추천 의도를 담은 리뷰를 작성하고, 게임 출시일로부터 짧은 기간 안에 리뷰를 작성하나 다소 긴 시간동안 게임을 플레이한 후 리뷰를 작성하는 경향이 있으며, 높은 가격의 게임을 구매했을 때 리뷰를 작성하는 경향을 보였다. 본 연구는 과소보고하는 리뷰어의 특성을 탐색적으로 살펴보았기에 과소보고 편향에 대한 이해를 확장시키는 기초 연구로서 의미를 지닐 것이다.

리뷰 데이터와 제품 정보를 이용한 멀티모달 감성분석 (Multimodal Sentiment Analysis Using Review Data and Product Information)

  • 황호현;이경찬;유진이;이영훈
    • 한국전자거래학회지
    • /
    • 제27권1호
    • /
    • pp.15-28
    • /
    • 2022
  • 최근 의류 등의 특정 쇼핑몰의 온라인 시장이 크게 확대되면서, 사용자의 리뷰를 활용하는 것이 주요한 마케팅 방안이 되었다. 이를 이용한 감성분석에 대한 연구들도 많이 진행되고 있다. 감성분석은 사용자의 리뷰를 긍정과 부정 그리고 필요에 따라서 중립으로 분류하는 방법이다. 이 방법은 크게 머신러닝 기반의 감성분석과 사전기반의 감성분석으로 나눌 수 있다. 머신러닝 기반의 감성분석은 사용자의 리뷰 데이터와 그에 대응하는 감성 라벨을 이용해서 분류 모델을 학습하는 방법이다. 감성분석 분야의 연구가 발전하면서 리뷰와 함께 제공되는 이미지나 영상 데이터 등을 함께 고려하여 학습하는 멀티모달 방식의 모델들이 연구되고 있다. 리뷰 데이터에서 제품의 카테고리와 사용자별로 사용되는 단어 등의 특징이 다르다. 따라서 본 논문에서는 리뷰데이터와 제품 정보를 동시에 고려하여 감성분석을 진행한다. 리뷰를 분류하는 모델로는 기본 순환신경망 구조에서 Gate 방식을 도입한 Gated Recurrent Unit(GRU), Long Short-Term Memory(LSTM) 그리고 Self Attention 기반의 Multi-head Attention 모델, Bidirectional Encoder Representation from Transformer(BERT)를 사용해서 각각 성능을 비교하였다. 제품 정보는 모두 동일한 Multi-Layer Perceptron(MLP) 모델을 이용하였다. 본 논문에서는 사용자 리뷰를 활용한 Baseline Classifier의 정보와 제품 정보를 활용한 MLP모델의 결과를 결합하는 방법을 제안하며 실제 데이터를 통해 성능의 우수함을 보인다.

상품 리뷰 분석을 통한 사용자 맞춤형 추천 시스템 (Customized recommendation system through product review analysis)

  • 황도연;배상중;김창수;정회경
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국정보통신학회 2018년도 춘계학술대회
    • /
    • pp.460-461
    • /
    • 2018
  • 전통적인 방식의 추천 시스템은 사용자가 독립적으로 행동한다는 가정하에 개발된 방식이며, 단순하게 상품을 나열하거나 상품의 속성과 사용자의 기호를 연관하는 기능이 부족하여 가독성과 효율성이 떨어지는 문제점이 있다. 이를 해결하기 위해 본 논문에서는 상품 리뷰 데이터를 크롤링을 한 뒤 R을 이용한 텍스트 마이닝 기법을 사용하여 비정형의 리뷰 데이터를 사용자의 구매이력과의 연관 분석을 통해 의미 있는 정보로 가공하여 사용자 맞춤형 정보를 제공하는 시스템을 제안한다. 이를 통해 사용자는 방대한 양의 상품 리뷰 데이터를 분석할 필요 없이 자신에게 필요한 데이터만을 제공받을 수 있게 되어 사용자의 의사결정에 도움 될 것으로 사료된다.

  • PDF

리뷰 감정 분석을 통한 전자상거래 상품 분석 및 평가 시스템 설계 (System Design for Analysis and Evaluation of E-commerce Products Using Review Sentiment Word Analysis)

  • 최지은;유혜진;유다빈;김나라;김윤희
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제22권5호
    • /
    • pp.209-217
    • /
    • 2016
  • 스마트폰 보급의 확산으로 상품 구매 시 웹 사이트 및 SNS를 이용하여 상품 리뷰를 참고하는 소비자들이 증가하고 있다. 그러나 이러한 방식은 소비자가 직접 리뷰 데이터를 찾아 읽어야하기 때문에 시간이 오래 걸릴 뿐만 아니라 가공되지 않은 데이터가 줄 수 있는 정보는 한정적이다. 따라서 상품의 리뷰를 수집하여 기본 정보뿐만 아니라 리뷰 문장의 감정 분석을 통한 가공된 정보를 제공하는 시스템이 필요하다. 하지만 현재 이러한 상품 리뷰 분석 정보를 제공하는 시스템의 대다수는 상품의 분류와 상품의 속성을 반영하는 것이 부족하다. 본 논문에서는 상품의 분류와 속성을 반영하는 리뷰 감정 분석을 통한 전자 상거래 상품 분석 및 평가를 제공하는 시스템을 설계 및 구현하였다. 이를 도서 상품에 적용하여 구축한 시스템을 통해 소비자가 방대한 양의 상품의 리뷰 데이터를 분석할 필요 없이 상품의 속성 및 분류에 따라 가공된 분석 결과를 시각적으로 빠르게 제공받을 수 있음을 보였다.