• Title/Summary/Keyword: 리머

Search Result 194, Processing Time 0.019 seconds

240 channel Marine Seismic Data Acquisition by Tamhae II (탐해2호의 240채널 해양탄성파 탐사자료취득)

  • Park Keun-Pil;Lee Ho-Young;Koo Nam-Hyung;Kim Kyeong-O;Kang Moo-Hee;Jang Seong-Hyung;Kim Young-Gun
    • Geophysics and Geophysical Exploration
    • /
    • v.2 no.2
    • /
    • pp.77-85
    • /
    • 1999
  • The 3-D seismic research vessel, Tamhae II, was built to raise up the probability of the hydrocarbon discovery in the Korean continental shelf and the first test survey was completed in the East Sea. During the survey, the 240 channel 2-D marine seismic data were acquired by the Korean flag vessel for the first time. Tamhae II has been equipped with source, receiver, recording equipment, and navigation equipment as well as an onboard processing system. The source is composed of four subarrays and each subarray has six airguns. Total airgun volume is 4578 $in^3$. The receiver consists of two sets of 3 km long 240 channel streamer. In the first survey, the successful acquisition of 2-D seismic data was accomplished. From the result of the data processing, we confirmed that the high quality seismic data were acquired. For the high quality data acquisition, technology of survey design and planning, operation of vessel and equipments and systematic quality control should be developed.

  • PDF

P-wave Velocity Analysis Around the BSR Using Wide-angle Ocean-bottom Seismic Data (해저면 광각 탄성파 탐사자료를 이용한 BSR 부근의 P파 속도 분석)

  • Kim, Byoung-Yeop;Byun, Joong-Moo
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.2
    • /
    • pp.173-182
    • /
    • 2009
  • In April 2008, KIGAM carried out an ocean-bottom seismometer (OBS) survey in the central Ulleung Basin where strong bottom simulating reflectors (BSRs) were revealed from previous surveys and some gas-hydrate samples were retrieved by direct sampling. The purpose of this survey is to estimate the velocity structure near the BSR in the gas hydrate prospect area using wide-angle seismic data recorded on the ocean-bottom seismometers. Along with the OBS survey, a 2-D seismic survey was performed whereby stratigraphic and preliminary velocity information was obtained. Two methods were applied to wide-angle data for estimating P wave velocity; one is velocity analysis in the $\tau$-p domain and the other is seismic traveltime inversion. A 1-D interval velocity profile was obtained by the first method, which was refined to layered velocity structure by the latter method. A layer stripping method was adopted for modeling and inversion. All velocity profiles at each OBS site clearly show velocity reversal at BSR depths due to the presence of gas hydrates. In addition, we could confirm high velocity in the column/chimney structure.

A Study on Jeju Music Education Direction through Philosophies of Music Education (음악 교육 철학적 접근을 통한 제주 음악 교육 방향 고찰)

  • Ko, Hye-young;Hwang, Kyung-Soo;Yang, Jeong-Cheol
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.12
    • /
    • pp.597-607
    • /
    • 2019
  • In this study, we suggest a policy for setting the direction of Jeju Music Education with implications from the process of arranging philosophical theories related to music education and analyzing advanced cases. The philosophical theories of music education were examined by Schiller, Steiner, Dewey, Bourdieu, Reimer, and Elliotts. In addition, this study checked the lessons in music education programs in Germany, Venezuela, and Finland, and we make policy suggestions in four contexts to set the direction of music education in the Jeju community based on interviews with 10 experts. Suggestions for improving social awareness of music education, suggestions for music education in the elementary and secondary public school sectors, in the proposals for music education in the lifelong education sector, and the suggestions for institutional policy all included music education professionals recruited from among the culture and art sectors within the Jeju Special Self-Governing Province's Cultural Policy Division. Music advisors were also recruited from the music and sector music councils within the Jeju Special Self-Governing Province Council.

Poly(arylene ether ketone) block copolymer prepared through sulfonation process for polymer electrolyte membrane fuel cell (술폰화 공정을 통해 제조한 고분자 전해질형 연료전지용 폴리(아릴렌 이서 케톤) 블록 코폴리머)

  • Jang, Hyeri;Nahm, Keesuk;Yoo, Dongjin
    • Journal of Energy Engineering
    • /
    • v.25 no.3
    • /
    • pp.66-72
    • /
    • 2016
  • In this study, a sulfonated poly(arylene ether ketone) block copolymer was prepared from hydrophilic oligomer and hydrophobic oligomer. The structure of the prepared membrane was characterized by $^1H$-NMR, FT-IR and GPC. The $M_w$(weight-average molecular weights) of the polymer was $209,700g\;mol^{-1}$ and the molecular weight distribution($M_w/M_n$) of 1.25 was obtained. The prepared membrane showed excellent thermal stability with gradual weight loss up to $200^{\circ}C$. The proton conductivity of SPAEK block copolymer reached the maximum of $9.0mS\;cm^{-1}$ at $90^{\circ}C$ under 100% relative humidity (RH). From the observed results, it is necessary to do more aggressive attempt to study the possibility of application as an ion-conductive composite electrolyte.

A Study Based on Molecular Orbital Theory of Polymerization of Oxetane High Explosives (옥세탄 고폭 화약류의 중합반응에 관한 분자 궤도론적 연구)

  • Kim, Joon-Tae
    • Applied Chemistry for Engineering
    • /
    • v.20 no.2
    • /
    • pp.159-164
    • /
    • 2009
  • Monomers of oxetane high explosives were theoretically examined in terms of reactivity, reaction mechanism and process of polymerization substituted by azido $(-CH_2N_3)$, nitrato $(-CH_2ONO_2)$ and hydrazino $(-CH_2N_2H_3)$ which belong to the 5th class hazardous materials and have explosiveness under acid catalyst using MINDO/3, MNDO, and AMI methods for formal charge, heat of formation, and energy level. Nucleophilicity and base of oxetane high explosives could be explained by negative charge size of oxetane oxygen atom and reactivity of oxetane in the growth stage of polymerization under acid catalyzer could be expected to be governed by positive charge size of axial carbon atom and low LUMO energy of electrophile. It could be estimated that carbenium ion was more beneficial in the conversion process of oxetane high explosives than that of stabilization energy (13.90~31.02 kcal/mole) of oxonium ion. In addition, concentration of oxonium ion and carbenium ion in equilibrium state influenced mechanism and it was also estimated that $S_N1$ mechanism reacts faster than that of $S_N2$ in prepolymer growth stage considering quick equilibrium based on form and calculation of polymerization under acid catalyzer.

A Study on the Shallow Marine Site Survey using Seismic Reflection and Refraction Method (탄성파 반사법 및 굴절법을 이용한 천해저 지반조사에 대한 연구)

  • Shin, Sung-Ryul;Kim, Chan-Su;Jo, Churl-Hyun
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.2
    • /
    • pp.109-115
    • /
    • 2008
  • It is very important to estimate the physical properties of survey area and delineate the geological basement in marine site survey for the design of offshore structures. For the purpose of providing high quality data by means of engineering site survey, it is necessary to apply several survey techniques and carry out the integrated interpretation to each other. In this study, we applied single channel seismic reflection method and OBC (Ocean Bottom Cable) type seismic refraction method at shallow marine. We used a dual boomer-single channel streamer as a source-receiver in seismic reflection survey and airgun source-the developed OBC type streamer in seismic refraction survey. We made 24 channels OBC type streamer which has 4m channel interval and each channel is composed of single hydrophone and preamplifier. We tested the field applicability of the proposed method and applied the typical seismic data processing methods to the obtained reflection data in order to enhance the data quality and image resolution. In order to estimate the geological velocity distribution from refraction data, seismic refraction tomography technique was applied. Therefore, we could successfully perform time-depth conversion using the velocity information as an integrated interpretation. The proposed method could provide reliable geologic information such as sediment layer thickness and 3D basement depth map.

Broadband Processing of Conventional Marine Seismic Data Through Source and Receiver Deghosting in Frequency-Ray Parameter Domain (주파수-파선변수 영역에서 음원 및 수신기 고스트 제거를 통한 전통적인 해양 탄성파 자료의 광대역 자료처리)

  • Kim, Su-min;Koo, Nam-Hyung;Lee, Ho-Young
    • Geophysics and Geophysical Exploration
    • /
    • v.19 no.4
    • /
    • pp.220-227
    • /
    • 2016
  • Marine seismic data have not only primary signals from subsurface but also ghost signals reflected from the sea surface. The ghost decreases temporal resolution of seismic data because it attenuates specific frequency components. For eliminating the ghost signals effectively, the exact ghost delaytimes and reflection coefficients are required. Because of undulation of the sea surface and vertical movements of airguns and streamers, the ghost delaytime varies spatially and randomly while acquiring seismic data. The reflection coefficient is a function of frequency, incidence angle of plane-wave and the sea state. In order to estimate the proper ghost delaytimes considering these characteristics, we compared the ghost delaytimes estimated with L-1 norm, L-2 norm and kurtosis of the deghosted trace and its autocorrelation on synthetic data. L-1 norm of autocorrelation showed a minimal error and the reflection coefficient was calculated using Kirchhoff approximation equation which can handle the effect of wave height. We applied the estimated ghost delaytimes and the calculated reflection coefficients to remove the source and receiver ghost effects. By removing ghost signals, we reconstructed the frequency components attenuated near the notch frequency and produced the migrated stack section with enhanced temporal resolution.

Acoustic Full-waveform Inversion Strategy for Multi-component Ocean-bottom Cable Data (다성분 해저면 탄성파 탐사자료에 대한 음향파 완전파형역산 전략)

  • Hwang, Jongha;Oh, Ju-Won;Lee, Jinhyung;Min, Dong-Joo;Jung, Heechul;Song, Youngsoo
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.1
    • /
    • pp.38-49
    • /
    • 2020
  • Full-waveform inversion (FWI) is an optimization process of fitting observed and modeled data to reconstruct high-resolution subsurface physical models. In acoustic FWI (AFWI), pressure data acquired using a marine streamer has mainly been used to reconstruct the subsurface P-wave velocity models. With recent advances in marine seismic-acquisition techniques, acquiring multi-component data in marine environments have become increasingly common. Thus, AFWI strategies must be developed to effectively use marine multi-component data. Herein, we proposed an AFWI strategy using horizontal and vertical particle-acceleration data. By analyzing the modeled acoustic data and conducting sensitivity kernel analysis, we first investigated the characteristics of each data component using AFWI. Common-shot gathers show that direct, diving, and reflection waves appearing in the pressure data are separated in each component of the particle-acceleration data. Sensitivity kernel analyses show that the horizontal particle-acceleration wavefields typically contribute to the recovery of the long-wavelength structures in the shallow part of the model, and the vertical particle-acceleration wavefields are generally required to reconstruct long- and short-wavelength structures in the deep parts and over the whole area of a given model. Finally, we present a sequential-inversion strategy for using the particle-acceleration wavefields. We believe that this approach can be used to reconstruct a reasonable P-wave velocity model, even when the pressure data is not available.

Tracking Propagation Mechanism on the Surface of Polyvinyl-Chloride-Sheathed Flat Cord based on Electric Field Analysis and Gas Discharge Physics (전계해석과 기체방전 이론을 기반으로 한 Polyvinyl-Chloride-Sheathed Flat Cord 표면의 트래킹 진전 메커니즘)

  • Lim, Dong-Young;Park, Herie;Jee, Seung-Wook
    • Fire Science and Engineering
    • /
    • v.33 no.2
    • /
    • pp.30-38
    • /
    • 2019
  • Tracking, which is one of the main causes of electrical fires, is perceived as a physical phenomenon of electrical discharge. Hence tracking should be explained based on electric field analysis, conduction path by electron generation, and gas discharge physics. However, few papers have considered these details. This paper proposes a tracking mechanism including their effects on tracking progress. In order to prove this mechanism, a tracking experiment, an electric field analysis for the carbonization evolution model, and an explanation of the tracking process by gas discharge physics were conducted. From the tracking experiment, the current waveforms were measured at each stage of the tracking progress from corona discharge to tracking breakdown. The electric field analysis was carried out in order to determine the electric field on the surface of a dry-band and the high electric field region for electron generation during the generation and progress of carbonization. In this paper, the proposed tracking mechanism consisted of six stages including electron avalanche by corona discharge, accumulation of positive ions, expansion of electron avalanche, secondary electron emission avalanche, streamer, and tracking by conductive path. The pulse current waveforms measured in the tracking experiment can be explained by the proposed tracking mechanism. The results of this study will be used as the technical data to detect tracking phenomenon, which is the cause of electric fire, and to improve the proof tracking index.

Seismic Imaging of Ocean-bottom Seismic Data for Finding a Carbon Capture and Storage Site: Two-dimensional Reverse-time Migration of Ocean-bottom Seismic Data Acquired in the Pohang Basin, South Korea (이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정)

  • Park, Sea-Eun;Li, Xiangyue;Kim, Byoung Yeop;Oh, Ju-Won;Min, Dong-Joo;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.78-88
    • /
    • 2021
  • Owing to the abnormal weather conditions due to global warming, carbon capture and storage (CCS) technology has attracted global attention as a countermeasure to reduce CO2 emissions. In the Pohang CCS demonstration project in South Korea, 100 tons of CO2 were successfully injected into the subsurface CO2 storage in early 2017. However, after the 2017 Pohang earthquake, the Pohang CCS demonstration project was suspended due to an increase in social concerns about the safety of the CCS project. In this study, to reconfirm the structural suitability of the CO2 storage site in the Pohang Basin, we employed seismic imaging based on reverse-time migration (RTM) to analyze small-scale ocean-bottom seismic data, which have not been utilized in previous studies. Compared with seismic images using marine streamer data, the continuity of subsurface layers in the RTM image using the ocean-bottom seismic data is improved. Based on the obtained subsurface image, we discuss the structural suitability of the Pohang CO2 storage site.