Browse > Article
http://dx.doi.org/10.5855/ENERGY.2016.25.3.066

Poly(arylene ether ketone) block copolymer prepared through sulfonation process for polymer electrolyte membrane fuel cell  

Jang, Hyeri (Graduate school, Department of Energy Storage.Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University)
Nahm, Keesuk (Graduate school, Department of Energy Storage.Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University)
Yoo, Dongjin (Graduate school, Department of Energy Storage.Conversion Engineering, R&D Education Center for Fuel Cell System-Whole Life Cycle R&D, and Hydrogen & Fuel Cell Research Center, Chonbuk National University)
Publication Information
Abstract
In this study, a sulfonated poly(arylene ether ketone) block copolymer was prepared from hydrophilic oligomer and hydrophobic oligomer. The structure of the prepared membrane was characterized by $^1H$-NMR, FT-IR and GPC. The $M_w$(weight-average molecular weights) of the polymer was $209,700g\;mol^{-1}$ and the molecular weight distribution($M_w/M_n$) of 1.25 was obtained. The prepared membrane showed excellent thermal stability with gradual weight loss up to $200^{\circ}C$. The proton conductivity of SPAEK block copolymer reached the maximum of $9.0mS\;cm^{-1}$ at $90^{\circ}C$ under 100% relative humidity (RH). From the observed results, it is necessary to do more aggressive attempt to study the possibility of application as an ion-conductive composite electrolyte.
Keywords
polymer electrolyte membrane; poly(arylene ether ketone); PEMFC;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Chu, J., Y., Kim, A., R., Nahm, K., S., Lee, H., K., Yoo, D., J., 2013, Synthesis and characterization of partially fluorinated sulfonated poly(arylene biphenylsulfone ketone) block copolymers containing 6FBPA and perfluorobiphenylene units, J. Hydrogen, Energy, Vol. 38, No. 14, pp. 6268-6274   DOI
2 Park. J., Enomoto. K., Yamashita. T., Takagi. Y., 2013, Polymerization mechanism for radiation-induced grafting of styrene into alicyclic polyimide films for preparation of polymer electrolyte membranes, J. Membr. Sci. Vol. 438, pp. 1-7   DOI
3 Hickner. M. A., Ghassemi. H., Kim. Y. S., Einsla. B. R., McGrath. J. E., 2004, Alternative Polymer System for Proton Exchange Membranes (PEMs), Chem. Rev, Vol. 104, No. 10, pp. 4587-4612   DOI
4 Chang. K. C, 2012, Fuel cell, Magazine of the SAREK, Vol. 41, No. 6, pp. 11-11
5 Rikukawa, M., Sanui, K., 2000, Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers, Polym. Sci. Vol. 25, No. 10, pp. 1463-1502
6 Mauritz, K., A., Moore, R., B., 2004, State of Understanding of Nafion, Chem. Rev. 104, No. 10, pp. 4535-4586   DOI
7 Chengji, Z., Haidan, L., Ke, S., Xianfeng, Hongzhe, N., Zhe, W., Hui, N., 2006, Block sulfonated poly (ether ether ketone)s (SPEEK) ionomers with high ion-exchange capacities for proton exchange membranes, J. Pow. Sour. Vol. 162, No. 2, pp. 1003-1009   DOI
8 Lei, W., Ke, L., Guangming, Z., Junqin, L., 2011, Preparation and properties of highly branched sulfonated poly(ether ether ketone)s doped with antioxidant 1010 as proton exchange membranes, J. Membr. Sci, Vol. 379, No. 1-2, pp. 440-448   DOI
9 Song, J., M., Lee, S., Y., Woo, H., S., Shin, D., W., Sohn, J., Y., Lee, Y., M., Shin, J., H., 2014, EB-crosslinked SPEEK electrolyte membrane with 1,4-butanediol divinyl ether/triallyl isocyanurate for fuel cell application, J. Membr. Sci. Vol. 469, pp. 209-215   DOI
10 Kobayashi, T., Rikukawa, M., Sanui, K., Ogata, N., 1998, Proton-conducting polymers derived from poly(ether-etherketone) and poly(4-phenoxybenzoyl-1,4-phenylene), Solid State Ionics. Vol. 106, No. 3-4, pp. 219-225   DOI
11 Wang, F., Chen, T., Xu, T., 1998, Sodium sulfonatefunctionalized poly(ether ether ketone)s, Macromol. Chem. Phys. Vol. 199, No. 7, pp. 1421-1426   DOI
12 Schauer, J. Brozova., L., 2005, Heterogeneous ionexchange membranes based on sulfonated poly(1,4- phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties, J. Membr. Sci. Vol. 250, No. 1-2, pp. 151-157   DOI
13 Zhao, Y., Yin. J., 2010, Synthesis and evaluation of all-block-sulfonated copolymers as proton exchange membranes for fuel cell application, 2010, J. Membr. Sci. Vol. 351, No. 1-2, pp. 28-35   DOI
14 Park, S.,Ruoff. R., S., 2009, Chemical methods for the production of graphenes, Nat Nanothechnol. Vol. 4, pp. 217-224   DOI
15 Guo, W., Li, X., Wang, H., Pang, J., Wang, G., Jiang. Z., 2013, Synthesis of branched sulfonated poly(aryl ether ketone) copolymers and their proton exchange membrane properties, J. Membr. Sci. Vol. 444, pp. 259-267   DOI
16 Kopitzke, R., W., Linkous. C., A., 2000, Conductivity and water uptake of aromatic-based proton exchange membrane electrolyte, J. Electrochem. Soc., Vol. 147, No. 5, pp. 1677-1681   DOI
17 Kumar, G., G., Kim, A., R., Nahm, K., S., Yoo. D., J., Elizabeth. R., 2010, High ion and lower molecular transportation of the poly vinylidene fluoride- hexa fluoro propylene hybrid membranes for the high temperature and lower humidity direct methanol fuel cell applications, J. Pow. Sour, Vol. 195, No. 18, pp. 5922-5928   DOI