• Title/Summary/Keyword: 리드-솔로몬 복호기

Search Result 15, Processing Time 0.017 seconds

A Continuous Versatile Reed-Solomon Decoder with Variable Code Rate and Block Length (가변 부호율과 블록 길이를 갖는 연속 가변형 리드솔로몬 복호기)

  • 공민한;송문규
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.549-552
    • /
    • 2003
  • In this paper, an efficient architecture of a versatile Reed-Solomon (RS) decoder is designed, where the message length k as well as the block length n can be variable. The decoder permits 3-step pipelined processing based on the modified Euclid's algorithm(MEA). A new architecture for the MEA is designed for variable values of error correcting capability t. To maintain the throughput rate with less circuitry, the MEA block uses both the recursive and the overclocking technique. The decoder can decode a codeword received not only in a burst mode, but also in a continuous mode. It can be used in a wide range of applications due to its versatility. A versatile RS decoder over GF(2$^{8}$ ) having the error-correcting capability of up to 10 has been designed in VHDL, and successfully synthesized in an FPGA chip.

  • PDF

New Fast and Cost effective Chien Search Machine Design Using Galois Subfield Transformation (갈로이스 부분장 변환을 이용한 새로운 고속의 경제적 치엔탐색기의 설계법에 대하여)

  • An, Hyeong-Keon;Hong, Young-Jin;Kim, Jin-Young
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.3 s.357
    • /
    • pp.61-67
    • /
    • 2007
  • In Reed Solomon decoder, when there are more than 4 error symbols, we usually use Chien search machine to find those error positions. In this case, classical method requires complex and relatively slow digital circuitry to implement it. In this paper we propose New fast and cost effective Chien search machine design method using Galois Subfield transformation. Example is given to show the method is working well. This new design can be applied to the case where there are more than 5 symbol errors in the Reed-Solomon code word.

Design of an Adaptive Reed-Solomon Decoder with Varying Block Length (가변 블록길이를 갖는 적응형 리드솔로몬 복호기의 설계)

  • Song, Moon-Kyou;Kong, Min-Han
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.28 no.4C
    • /
    • pp.365-373
    • /
    • 2003
  • In this paper, we design a versatle RS decoder which can decode RS codes of any block length n as well as any message length k, based on a modified Euclid's algorithm (MEA). This unique feature is favorable for a shortened RS code of any block length it eliminates the need to insert zeros before decoding a shortened RS code. Furthermore, the value of error correcting capability t can be changed in real time at every codeword block. Thus, when a return channel is available, the error correcting capability can be adaptiverly altered according to channel state. The decoder permits 4-step pipelined processing : (1) syndrome calculation (2) MEA block (3) error magnitude calculation (4) decoder failure check. Each step is designed to form a structure suitable for decoding a RS code with varying block length. A new architecture is proposed for a MEA block in step (2) and an architecture of outputting in reversed order is employed for a polynomial evaluation in step (3). To maintain to throughput rate with less circuitry, the MEA block uses not only a multiplexing and recursive technique but also an overclocking technique. The adaptive RS decoder over GF($2^8$) with the maximal error correcting capability of 10 has been designed in VHDL, and successfully synthesized in a FPGA.

New Enhanced Degree Computationless Modified Euclid's Algorithm and its Architecture for Reed-Solomon decoders (Reed-Solomon 복호기를 위한 새로운 E-DCME 알고리즘 및 하드웨어 구조)

  • Baek, Jae-Hyun;SunWoo, Myung-Hoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.32 no.8A
    • /
    • pp.820-826
    • /
    • 2007
  • This paper proposes an enhanced degree computationless modified Euclid's(E-DCME) algorithm and its architecture for Reed-Solomon decoders. The proposed E-DCME algorithm has shorter critical path delay that is $T_{mult}+T_{add}+T_{mux}$ compared with the existing modified Euclid's algorithm and the degree computationless modified Euclid's(DCME) algorithm since it uses new initial conditions. The proposed E-DCME architecture employing a systolic array requires only 2t-1 clock cycles to solve the key equation without initial latency. In addition, the E-DCME architecture consisting of 3t basic cells has regularity and scalability since it uses only one processing element. The E-DCME architecture using the $0.18{\mu}m$ Samsung standard cell library consists of 18,000 gates.

40Gb/s Foward Error Correction Architecture for Optical Communication System (광통신 시스템을 위한 40Gb/s Forward Error Correction 구조 설계)

  • Lee, Seung-Beom;Lee, Han-Ho
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.45 no.2
    • /
    • pp.101-111
    • /
    • 2008
  • This paper introduces a high-speed Reed-Solomon(RS) decoder, which reduces the hardware complexity, and presents an RS decoder based FEC architecture which is used for 40Gb/s optical communication systems. We introduce new pipelined degree computationless modified Euclidean(pDCME) algorithm architecture, which has high throughput and low hardware complexity. The proposed 16 channel RS FEC architecture has two 8 channel RS FEC architectures, which has 8 syndrome computation block and shared single KES block. It can reduce the hardware complexity about 30% compared to the conventional 16 channel 3-parallel FEC architecture, which is 4 syndrome computation block and shared single KES block. The proposed RS FEC architecture has been designed and implemented with the $0.18-{\mu}m$ CMOS technology in a supply voltage of 1.8 V. The result show that total number of gate is 250K and it has a data processing rate of 5.1Gb/s at a clock frequency of 400MHz. The proposed area-efficient architecture can be readily applied to the next generation FEC devices for high-speed optical communications as well as wireless communications.