• Title/Summary/Keyword: 로프 진동

Search Result 23, Processing Time 0.024 seconds

압축코일 스프링을 이용한 낙석방지 기술[CK 공법]

  • 건설교통부
    • Geotechnical Engineering
    • /
    • v.20 no.6
    • /
    • pp.44-47
    • /
    • 2004
  • 본 기술은 와이어로프의 중간 부위와 단부에 코일스프링을 설치하여 하중 작용시 압축으로 저항하게 하는 낙석방지 울타리의 제작ㆍ설치 기술이다. 이는 낙석 발생시 고유진동수가 작고 큰 변형률이 유도되므로 접촉시간이 길어 와이어로프에 발생하는 장력을 감소시키고 충격흡수능력을 향상시켰으며, 압축으로 저항하여 와이어로프가 먼저 파단된 후 스프링이 항복하도록 하여 안전성을 향상시킨 기술이다.(중략)

  • PDF

Experiments on Rope Vibrations using a Small-Scale Elevator Simulator (엘리베이터 시뮬레이터를 이용한 로프 진동 실험)

  • Yang, Dong-ho;Kwak, Moon K.;Kim, Ki-young;Baek, Jong-dae
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.252-255
    • /
    • 2014
  • The elevator rope is easy to oscillate and continue vibrating because the rope structure is flexible and inner damping is small. The vibration of elevator rope is caused by the building vibration excited by external disturbances such as winds and earthquake. This paper is concerned with the experimental verification of the elevator rope vibrations using a small-scale simulator. The elevator rope vibration coupled with the building vibration was modelled using the energy method in the previous study. In this study, the natural frequencies of the elevator rope were computed using the theoretical model and compared to experimental results. Also, the time-responses of the rope vibration during the cage motion were measured by laser sensors and compared to the theoretical predictions. Experimental results are in good agreement with theoretical predictions.

  • PDF

Vibration of Elevator Rope with a Spring-mass System at the Tip (끝 단에 스프링-질량계가 연결된 엘리베이터 로프의 진동)

  • Kwak, Moon K.;Han, Sangbo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.24 no.4
    • /
    • pp.317-323
    • /
    • 2014
  • This study is concerned with the free vibration analysis of an inextensible uniform rope with a spring-mass system at the tip. The rope is hanged vertically in a gravitational field. This problem is related to the free vibration of an elevator rope connected to an elevator cage. The equation of motion and the corresponding boundary conditions are derived by using the Hamilton's principle. The general solution of the governing equation of motion is expressed in terms of Bessel functions. The characteristic equation was derived by applying the boundary conditions. The characteristic values which are in fact non-dimensionalized natural frequencies were obtained numerically. The effects of mass and spring constant were investigated. The numerical results show how the tip mass and spring affect the natural frequencies of the rope.

Aerodynamic Stability Assessment of PWS and CFRC Hanger Ropes for Suspension Bridge by Experiments (현수교 PWS 및 CFRC 행어로프의 내풍안정성 실험 평가)

  • Park, Hyung-Ghee;Kang, Seon-Jin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.6
    • /
    • pp.21-30
    • /
    • 2008
  • In this study, to evaluate the aerodynamic stability of suspension bridge hanger ropes, the wind tunnel tests are carried out. It is found that the vortex induced vibration is detected only in single PE-coated PWS cable case. And the wake galloping is occurred in twin cables spaced $3\sim6$ cable diameters of cable center to center when the incidence angle of wind is only zero degree. In case of other incidence angles of wind except zero degree, the wake galloping or the wake flutter are showed in twin cables even outside range of the bounds of $3\sim6$ cable diameters. CFRC cable shows very stable for the twin cables regardless of the distance between two cables, and also for various incidence angles of wind. Thus the characteristic of CFRC rope overwhelms one of PWS cable in aerodynamic stability.

Efficient Modal Analysis of Prestressed Structures via Model Order Reduction (모델차수축소법을 이용한 프리스트레스 구조물의 효율적인 고유진동해석)

  • Han, Jeong-Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.10
    • /
    • pp.1211-1222
    • /
    • 2011
  • It is necessary to use prestressed modal analysis to calculate the modal frequencies and mode shapes of a prestressed structure such as a spinning blade, a preloaded structure, or a thermally deformed pipe, because the prestress effect sometimes causes significant changes in the frequencies and mode shapes. When the finite element model under consideration has a very large number of degrees of freedom, repeated prestressed modal analyses for investigating the prestress effects might become too computationally expensive to finish within a reasonable design-process time. To alleviate these computational difficulties, a Krylov subspace-based model order reduction, which reduces the number of degrees of freedom of the original finite element model and speeds up the necessary prestressed modal analysis with the reduced order models (ROMs), is presented. The numerical process for the moment-matching model reduction is performed directly on the full order models (FOMs) (modeled in ANSYS) by the Arnoldi process. To demonstrate the advantages of this approach for performing prestressed modal analysis, the prestressed wheel and the compressor impeller under their high-speed rotation are considered as examples.

A study on the characteristics and actual conditions of operation noise and vibration of rope elevators in high-rise apartments (고층아파트 로프식 승강기의 운행 소음 및 진동 특성과 실태에 관한 연구)

  • Kang, Min-Woo;Oh, Yang-Ki
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.1
    • /
    • pp.84-91
    • /
    • 2021
  • An Elevator is a very important equipment in high-rise apartments. The noise generated by an elevator is causing inconvenience to residents. However, there are no laws and regulations on elevator noise, and moreover it is not clear how to measure and evaluate elevator noise. For these problems, the first priority should be given to grasping the characteristics of noise and vibration generated during elevator operation. In this study, noise and vibration generated when operating a rope-type elevator in a high-rise apartment are divided according to the number of floors and the type of room, and the noise and vibration are simultaneously measured to understand the characteristics of noise and vibration. The correlation coefficient according to the experimental conditions was determined. As a result, it was found that elevator noise was mainly composed of components in the 125 Hz to 500 Hz band, and the correlation with vibration in the 125 Hz to 500 Hz band was also significant. For the top layer, it was confirmed that the correlation coefficient was very high at 0.8 level.