• Title/Summary/Keyword: 로지스틱 회귀 분석

Search Result 1,683, Processing Time 0.027 seconds

Application Method of Logistic Regression Analysis for Annoyance Prediction Model Based on Predicted Noise Level (예측소음도를 이용한 어노이언스 예측모델을 위한 로지스틱 회귀분석의 적용방법)

  • Son, Jin-Hee;Lee, Kun;Choung, Tae-Ryang;Chang, Seo-Il
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.6
    • /
    • pp.555-561
    • /
    • 2010
  • Predicted noise level has been used to assess the annoyance response since noise map was generalized and being the normal method to assess the environmental noise. Unfortunately using predicted noise level to derive the annoyance prediction curve caused some problems. The data have to be grouped manually to use the annoyance prediction curve. The aim of this paper is to propose the method to handle the predicted noise level and the survey data for annoyance prediction curve. This paper used the percentage of persons annoyed(%A) and the percentage of persons highly annoyed as the descriptor of noise annoyance in a population. The logistic regression method was used for deriving annoyance prediction curve. It is concluded that the method of dichotomizing data and logistic regression was suitable to handle the predicted noise level and survey data.

Development of Large Fire Judgement Model Using Logistic Regression Equation (로지스틱 회귀식을 이용한 대형산불판정 모형 개발)

  • Lee, Byungdoo;Kim, Kyongha
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.3
    • /
    • pp.415-419
    • /
    • 2013
  • To mitigate forest fire damage, it is needed to concentrate suppression resources on the fire having a high probability to become large in the initial stage. The objective of this study is to develop the large fire judgement model which can estimate large fire possibility index between the fire size and the related factors such as weather, terrain, and fuel. The results of logistic regression equation indicated that temperature, wind speed, continuous drought days, slope variance, forest area were related to the large fire possibility positively but elevation has negative relationship. This model may help decision-making about size of suppression resources, local residents evacuation and suppression priority.

Features Reduction using Logistic Regression for Spam Filtering (로지스틱 회귀 분석을 이용한 스펨 필터링의 특징 축소)

  • Jung, Yong-Gyu;Lee, Bum-Joon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.10 no.2
    • /
    • pp.13-18
    • /
    • 2010
  • Today, The much amount of spam that occupies the mail server and network storage occurs the lack of negative issues, such as overload, and for users to delete the spam should spend time, resources have a problem. Automatic spam filtering on the incidence to solve the problem is essential. A lot of Spam filters have tried to solve the problem emerged as an essential element automatically. Unlike traditional method such as Naive Bayesian, PCA through the many-dimensional data set of spam with a few spindle-dimensional process that narrowed the operation to reduce the burden on certain groups for classification Logistic regression analysis method was used to filter the spam. Through the speed and performance, it was able to get the positive results.

A Success Prediction Model for Debut Webtoon Based on Reader reaction Using Deep Learning and Machine Learning (딥러닝과 머신러닝을 활용한 독자 반응 기반 웹툰 데뷔작 성공 예측 모델)

  • Heo, Eun Yeong;Kim, Seung Hwa;Kim, Hyon Hee
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2019.10a
    • /
    • pp.770-773
    • /
    • 2019
  • 본 논문에서는 매년 성장하는 웹툰 시장 속에서 신인 작가들이 성공할 수 있는 성공 요인을 밝히고자 하였다. 국내 1위 웹툰 플랫폼인 네이버 웹툰 중 데뷔작을 기준으로 완결 웹툰 212개, 연재 중인 웹툰 112개, 총 324개의 웹툰을 수집하여 연구를 진행하였다. 기존 선행연구와의 차별화를 두기 위해 독자의 직접적인 반응 중 하나인 댓글을 성공 요인에 포함하였다. 댓글에 담긴 긍정, 부정을 나타내는 주관을 탐지하기 위해 딥러닝을 이용하여 감성 분석을 실시하였다. 각 웹툰에 대한 댓글 반응을 포함하여 평균, '좋아요' 수, 장르 그리고 첫 화 댓글 수와 5화까지 평균 댓글 수를 흥행에 영향을 미치는 독립변수로 사용했다. 댓글 반응이 중요 요인인지를 확인하기 위해 각 모델 생성 시 댓글 반응을 포함한 모델과 포함하지 않은 모델을 생성하여 성능 평가를 실시하였다. 로지스틱 회귀분석, 아다 부스트, 그리고 서포트 벡터 머신 모델을 정확도와 ROC 그래프를 이용해 효율성을 비교하고, 이를 통해 댓글 반응을 활용한 로지스틱 회귀 모델이 가장 적합하다고 판단하였다. 모델 생성 결과 '좋아요' 수, 1화 댓글 수, 댓글 반응 순으로 성공 요인에 많은 영향을 미치는 것을 알 수 있었다.

Landslide susceptibility mapping using Logistic Regression and Fuzzy Set model at the Boeun Area, Korea (로지스틱 회귀분석과 퍼지 기법을 이용한 산사태 취약성 지도작성: 보은군을 대상으로)

  • Al-Mamun, Al-Mamun;JANG, Dong-Ho
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.2
    • /
    • pp.109-125
    • /
    • 2016
  • This study aims to identify the landslide susceptible zones of Boeun area and provide reliable landslide susceptibility maps by applying different modeling methods. Aerial photographs and field survey on the Boeun area identified landslide inventory map that consists of 388 landslide locations. A total ofseven landslide causative factors (elevation, slope angle, slope aspect, geology, soil, forest and land-use) were extracted from the database and then converted into raster. Landslide causative factors were provided to investigate about the spatial relationship between each factor and landslide occurrence by using fuzzy set and logistic regression model. Fuzzy membership value and logistic regression coefficient were employed to determine each factor's rating for landslide susceptibility mapping. Then, the landslide susceptibility maps were compared and validated by cross validation technique. In the cross validation process, 50% of observed landslides were selected randomly by Excel and two success rate curves (SRC) were generated for each landslide susceptibility map. The result demonstrates the 84.34% and 83.29% accuracy ratio for logistic regression model and fuzzy set model respectively. It means that both models were very reliable and reasonable methods for landslide susceptibility analysis.

A statistical study of mathematical thinkings and problem-solving abilities for logical-type problems with reference to secondary talented students (중등영재학생들의 수학적 사고 선호도와 논리형 문제의 해결능력에 관한 통계적 검증 연구)

  • Pak, Hong-Kyung
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.14 no.4
    • /
    • pp.198-204
    • /
    • 2009
  • It is one of important and interesting topics in mathematics education to study the process of the logical thinking and the intuitive thinking in mathematical problem-solving abilities from the viewpoint of mathematical thinking. The main purpose of the present paper is to investigate on this problem with reference to secondary talented students (students aged 16~17 years). In particular, we focus on the relationship between the preference of mathematical thinking and their problem-solving abilities for logical-type problems by applying logistic regression analysis.

Analysis of Factors for Korean Women's Cancer Screening through Hadoop-Based Public Medical Information Big Data Analysis (Hadoop기반의 공개의료정보 빅 데이터 분석을 통한 한국여성암 검진 요인분석 서비스)

  • Park, Min-hee;Cho, Young-bok;Kim, So Young;Park, Jong-bae;Park, Jong-hyock
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.10
    • /
    • pp.1277-1286
    • /
    • 2018
  • In this paper, we provide flexible scalability of computing resources in cloud environment and Apache Hadoop based cloud environment for analysis of public medical information big data. In fact, it includes the ability to quickly and flexibly extend storage, memory, and other resources in a situation where log data accumulates or grows over time. In addition, when real-time analysis of accumulated unstructured log data is required, the system adopts Hadoop-based analysis module to overcome the processing limit of existing analysis tools. Therefore, it provides a function to perform parallel distributed processing of a large amount of log data quickly and reliably. Perform frequency analysis and chi-square test for big data analysis. In addition, multivariate logistic regression analysis of significance level 0.05 and multivariate logistic regression analysis of meaningful variables (p<0.05) were performed. Multivariate logistic regression analysis was performed for each model 3.

A Statistical Mobilization Criterion for Debris-flow (통계 분석을 통한 산사태 토석류 전이규준 모델)

  • Yoon, Seok;Lee, Seung-Rae;Kang, Sin-Hang;Park, Do-Won
    • Journal of the Korean Geotechnical Society
    • /
    • v.31 no.6
    • /
    • pp.59-69
    • /
    • 2015
  • Recently, landslide and debris-flow disasters caused by severe rain storms have frequently occurred. Many researches related to landslide susceptibility analysis and debris-flow hazard analysis have been conducted, but there are not many researches related to mobilization analysis for landslides transforming into debris-flow in slope areas. In this study, statistical analyses such as discriminant analysis and logistic regression analysis were conducted to develop a mobilization criterion using geomorphological and geological factors. Ten parameters of geomorphological and geological factors were used as independent variables, and 466 cases (228 non-mobilization cases and 238 mobilization cases) were investigated for the statistical analyses. First of all, Fisher's discriminant function was used for the mobilization criterion. It showed 91.6 percent in the accuracy of actual mobilization cases, but homogeneity condition of variance and covariance between non-mobilization and mobilization groups was not satisfied, and independent variables did not follow normal distribution, either. Second, binomial logistic analysis was conducted for the mobilization criterion. The result showed 92.3 percent in the accuracy of actual mobilization cases, and all assumptions for the logistic analysis were satisfied. Therefore, it can be concluded that the mobilization criterion for debris-flow using binomial logistic regression analysis can be effectively applied for the prediction of debris-flow hazard analysis.

Establishment of Strategy for Management of Technology Using Data Mining Technique (데이터 마이닝을 통한 기술경영 전략 수립에 관한 연구)

  • Lee, Junseok;Lee, Joonhyuck;Kim, Gabjo;Park, Sangsung;Jang, Dongsik
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.2
    • /
    • pp.126-132
    • /
    • 2015
  • Technology forecasting is about understanding a status of a specific technology in the future, based on the current data of the technology. It is useful when planning technology management strategies. These days, it is common for countries, companies, and researchers to establish R&D directions and strategies by utilizing experts' opinions. However, this qualitative method of technology forecasting is costly and time consuming since it requires to collect a variety of opinions and analysis from many experts. In order to deal with these limitations, quantitative method of technology forecasting is being studied to secure objective forecast result and help R&D decision making process. This paper suggests a methodology of technology forecasting based on quantitative analysis. The methodology consists of data collection, principal component analysis, and technology forecasting by logistic regression, which is one of the data mining techniques. In this research, patent documents related to autonomous vehicle are collected. Then, the texts from patent documents are extracted by text mining technique to construct an appropriate form for analysis. After principal component analysis, logistic regression is performed by using principal component score. On the basis of this result, it is possible to analyze R&D development situation and technology forecasting.

Analysis on the Factors affecting the Ruling on Construction Project Litigation - Focused on the Union Establishment of the Urban and Housing Redevelopment Project - (건설사업의 소송판결에 영향을 미치는 요인에 관한 연구 - 도시정비사업 조합설립인가 사건을 중심으로 -)

  • Kim, Yohan;Jung, Boseon;Lee, Sangyoub
    • Korean Journal of Construction Engineering and Management
    • /
    • v.21 no.1
    • /
    • pp.40-49
    • /
    • 2020
  • This study analyzed the factors affecting the ruling of litigation on the housing reconstruction and housing redevelopment project based on the cross analysis and logistic regression analysis. According to cross analysis result, the defensive process prerequisite group was showed significant in many variables which were past legal relation, no ownership or association member status, double lawsuit, abuse of lawsuit right·litigation trust, existence of claim-preclusion, no standing to sue·no standing to be sued, lapse of litigation period, no legal interest, no own defect of approval. On the other hand, the offensive cause of action group was found to have no significant variable. According to logistic regression result, the defensive process prerequisite group was showed significant in many variables which were past legal relation, no standing to sue·no standing to be sued, no ownership or association member status, double lawsuit, no own defect of approval, abuse of lawsuit right·litigation trust, existence of claim-preclusion. Meanwhile, the offensive cause of action group was showed significant in only one variable that was defect in relation with articles of association. Overall, it is noteworthy that the offensive cause group showed very low significant results compared with the defensive process prerequisite group.