• 제목/요약/키워드: 로지스틱 회귀 분석

검색결과 1,683건 처리시간 0.026초

로지스틱 회귀모형을 분석하기 위한 SPSS, SAS, STATA의 비교분석

  • 김순귀;정동빈
    • 한국통계학회:학술대회논문집
    • /
    • 한국통계학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.287-292
    • /
    • 2002
  • 최근 여러 분야에서 로지스틱 회귀에 대한 필요성과 그 응용이 급증하면서 이를 분석하기 위한 통계패키지가 많이 개발되어 사용되고 있다. 이 논문에서는 자료의 유형에 따라 활용할 수 있는 여러 형태의 로지스틱 회귀모형을 간단히 살펴보고, SPSS, SAS, STATA, MINITAB과 같은 통계패키지를 사용하여 로지스틱 회귀모형에 적용할 때 각각 다룰 수 있는 범위와 그 특징에 대해 다룬다.

  • PDF

가중치 세분화 기반의 로지스틱 회귀분석 모델 (Fine-Grain Weighted Logistic Regression Model)

  • 이창환
    • 전자공학회논문지
    • /
    • 제53권9호
    • /
    • pp.77-81
    • /
    • 2016
  • 로지스틱 회귀분석은 오랫동안 다양한 분야에서 예측을 위한 기술 혹은 변수 간의 관계를 설명하기 위하여 사용되어 왔다. 로지스틱 회귀분석에서 각 속성은 목적 값에 대한 중요도를 가지는데 본 연구에서는 이를 세분화하여 각 속성의 값에 따라서 중요도를 부여하는 새로운 방법을 제시한다. 점진적 하강법을 이용하여 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하였다. 제안된 방법은 다양한 데이터를 이용하여 실험하였고 본 연구의 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.

속성값 기반의 정규화된 로지스틱 회귀분석 모델 (Value Weighted Regularized Logistic Regression Model)

  • 이창환;정미나
    • 정보과학회 논문지
    • /
    • 제43권11호
    • /
    • pp.1270-1274
    • /
    • 2016
  • 로지스틱 회귀분석은 통계학 등의 분야에서 예측을 위한 기술 혹은 변수 간의 상관관계를 설명하기 위하여 오랫동안 사용되어 왔다. 이러한 로지스틱 회귀분석 방법에서 현재 각 속성들은 목적 값에 대하여 동일한 중요도를 가지고 있다. 본 연구에서는 이러한 가중치 계산을 좀더 세분화하여 각 속성의 값이 서로 다른 중요도를 가지는 새로운 학습 방법을 제시한다. 알고리즘의 성능을 최대화하는 각 속성값 가중치의 값을 계산하기 위하여 점진적 하강법을 이용하여 개발하였다. 본 연구에서 제안된 방법은 다양한 데이터를 이용하여 실험하였고 속성값 기반 로지스틱 회귀분석 방법은 기존의 로지스틱 회귀분석보다 우수한 학습 능력을 보임을 알 수 있었다.

2007년 한국프로야구에서 도루성공모형 (Steal Success Model for 2007 Korean Professional Baseball Games)

  • 홍종선;최정민
    • 응용통계연구
    • /
    • 제21권3호
    • /
    • pp.455-468
    • /
    • 2008
  • 야구경기의 승패에 영향을 미치는 중요한 요인으로 간주되는 도루의 성공모형을 개발하기 위하여 2007년 한국프로야구 기록자료를 바탕으로 로지스틱 회귀모형들을 제안한다. 또한 한국프로야구의 도루성공과 실패에 대해 판별분석을 실시하고 분류 기준값을 결정하였으며, 판별분석 분류표를 이용해 로지스틱 회귀분석과 판별분석의 효율성을 비교한다. 전체적인 모형의 정확도는 로지스틱 회귀모형이 판별분석보다 더 좋은 것으로 나타났고, 연속형 자료를 범주형으로 변환한 자료에 대한 로지스틱 회귀모형도 유사한 효율성을 갖고있다.

한계강우량 산정을 위한 로지스틱 회귀분석 (Logistic regression analysis for Critical Rainfall Estimation)

  • 이창현;이강원;금호준;김병현
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2022년도 학술발표회
    • /
    • pp.232-232
    • /
    • 2022
  • 1차원 관망해석모형과 2차원 지표면범람 해석모형을 이용한 도시지역의 실시간 홍수예·경보시스템 구축은 모형의 모의에 많은 시간이 소요되므로 한계가 있다. 또한, 연구유역에서 시나리오 강우에 대해 침수를 유발시키는 한계강우량을 1-2차원 모형의 시행착오법을 적용한 반복적인 수행을 통해 산정하는 것은 비효율적인 방법이다. 따라서, 본 연구에서는 이에 대한 해결책으로 로지스틱 회귀를 이용하여 배수분구별 침수 발생기준 강우량을 산정하고자 한다. 침수 발생 한계강우량 산정을 배수분구 단위로 제시하기 위하여 로지스틱 회귀분석을 이용하였다. 풍수해저감종합계획(2015)과 침수흔적도를 이용하여 배수분구 별 침수이력에 대한 데이터베이스를 구축하고, 이를 1-2차원 수리해석을 통한 침수심과 함께 로지스틱 회귀모형에 학습하였다. 지속시간 1시간, 10mm 강우부터 500년 빈도의 Huff 3분위 시나리오 17개를 사용하여 확률강우량을 산정하였고, 이를 1-2차원 수리해석을 위한 입력자료로 사용하였다. EPA-SWMM을 통한 1차원 도시유출해석과 FLO-2D를 통한 2차원 침수해석에서 20cm 이상의 침수심이 발생하거나 지상관측자료, 침수흔적도 및 풍수해저감종합계획에서 실제 침수가 발생했을 경우를 1, 그렇지 않은 경우를 0으로 하여 데이터베이스를 구축하여 로지스틱 회귀모형에 학습시켜 침수 발생 한계강우량을 산정하였다. 로지스틱 회귀분석을 통해 서울시 지역의 배수분구별 한계강우량을 산정할 수 있으며, 지속적으로 관측되는 강우 및 침수 발생 유무 자료를 추가함으로써 산정된 침수 한계강우량을 상회하는 강우 사상이 나타났을 시에 침수 발생 유무를 확인하여 본 연구에서 제안한 방법에 대해 검증이 가능할 것으로 보인다.

  • PDF

로지스틱 회귀분석과 의사결정나무 분석을 이용한 일 대도시 주민의 우울 예측요인 비교 연구 (Comparative Analysis of Predictors of Depression for Residents in a Metropolitan City using Logistic Regression and Decision Making Tree)

  • 김수진;김보영
    • 한국콘텐츠학회논문지
    • /
    • 제13권12호
    • /
    • pp.829-839
    • /
    • 2013
  • 본 연구는 로지스틱 회귀분석과 의사결정나무 분석을 활용하여 일 대도시 주민의 우울에 영향을 주는 요인을 예측하고 비교하고자 시도된 서술적 조사연구이다. 연구대상은 20세에서 65세 미만의 일 대도시 주민 462명이었다. 자료 수집은 2011년 10월 7일부터 10월 21일까지이었으며, 자료 분석은 SPSS 18.0 프로그램을 이용하여 빈도, 백분율, 평균과 표준편차 및 ${\chi}^2$-test, t-test, 로지스틱 회귀분석, roc curve, 의사결정나무 분석으로 분석하였다. 본 연구 결과, 로지스틱 회귀분석과 의사결정나무 분석에서 공통적으로 나타난 우울 예측요인은 사회부적응, 주관적 신체증상 및 가족 지지이었다. 로지스틱 회귀분석에서 특이도 93.8%, 민감도 42.5%이었고, 본 연구의 모형 적합도를 roc curve 검증 한 결과 AUC=.84으로 본 연구 모형은 적합(p=<.001)하다고 할 수 있다. 우울예측에 대한 의사결정나무 분석은 분류에 대한 예측 정확도에서 특이도 98.3%, 민감도 20.8%이었고, 전체 분류 정확도는 로지스틱 회귀분석은 82.0%, 의사결정나무 분석은 80.5% 이었다. 본 연구 결과 민감성과 분류 정확도와 더 높게 나타난 로지스틱 회귀분석 방법이 지역 주민의 우울 예측 모형을 구축하는데 더 유용한 자료로 사용될 수 있으리라 사료된다.

로지스틱 회귀분석을 활용한 한강권역 홍수위험 예보기법 개발 (Flood Risk Forecasting using Logistic Regression for the Han River Basin)

  • 이선미;최영제;이재응
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2021년도 학술발표회
    • /
    • pp.354-354
    • /
    • 2021
  • 2020년은 장마기간이 49일간 지속됨에 따라 침수, 산사태 등 많은 홍수피해가 발생하였다. 특히 서울에서는 한강 본류의 수위가 급격하게 증가함에 따라 둔치 및 도로 침수 피해가 발생하였다. 이처럼 하천의 수위증가로 인한 홍수피해에 대응하기 위해 홍수통제소 및 기초지자체에서는 홍수특보를 발령한다. 이 홍수특보는 수위관측소 지점별 계획홍수량의 50 %, 70 % 이상의 홍수량이 발생할 경우 홍수주의보와 홍수경보가 발령되며, 이 기준은 각 권역별로 동일하다. 하지만 2017년 의정부시에서는 중랑천 수위증가로 인해 주변 지역에 침수피해가 발생하였지만, 이때 홍수량은 계획홍수량 대비 약 30 %에 불과하였다. 이처럼 한강권역 내 하천수위 증가로 인한 홍수피해는 계획홍수량의 50 % 이내에서 발생하기도 한다. 이에 본 연구에서는 한강권역을 대상으로 현재 2단계로 발령되는 홍수특보를 3단계로 세분화하고자 하였다. 단계별 홍수량 위험기준을 산정하기 위해 과거 홍수피해 발생 이력이 있는 한강권역 내 43개의 수위관측소 지점을 선정하였으며, 지점별 홍수기 동안의 홍수량 및 피해액 자료를 수집하였다. 각 단계별 홍수량 기준을 산정하기 위해서는 로지스틱 회귀분석 방법을 활용하여 피해발생 확률을 산정하였다. 1단계 기준은 계획홍수량 대비 홍수량 비율과 홍수피해 발생여부를 고려한 이항 로지스틱 회귀분석 모델을 구축한 후 3계 도함수에 적용하여 홍수피해 발생확률이 급격하게 증가하는 특이점을 산정하였다. 2단계와 3단계 기준은 다항 로지스틱 회귀분석 중 계층형 로지스틱 회귀분석을 활용하여 지점별 피해액 비율이 60 ~ 80 %, 80 ~ 100 % 구간에 속할 확률을 산정하고, 1단계와 동일한 방법으로 특이점을 산정하였다. 그 결과 지점별로 기존 제공되고 있는 홍수특보 기준을 과거 발생한 홍수피해를 고려하여 세분화할 수 있었으며, 이 결과는 지역별 홍수피해 저감대책에 활용될 수 있을 것으로 판단된다.

  • PDF

로지스틱회귀분석 모델을 활용한 도시철도 사상사고 사고예측모형 개발에 대한 연구 (Study on Accident Prediction Models in Urban Railway Casualty Accidents Using Logistic Regression Analysis Model)

  • 진수봉;이종우
    • 한국철도학회논문집
    • /
    • 제20권4호
    • /
    • pp.482-490
    • /
    • 2017
  • 본 연구는 사고심각도 분류 및 예측을 위한 철도사고조사 통계기법에 관한 연구이다. 그동안의 선형 회귀분석은 사고 심각도 분석에 어려움이 있었으나 로지스틱회귀분석은 이를 보완할 수 있었다. 데이터마이닝 기법인 로지스틱회귀분석을 활용, 서울지하철(5~8호선) 역사 내 전도사고 중 에스컬레이터 전도사고 발생에 영향을 주는 사고예측 모형 변수는 사고자 연령, 음주여부, 사고 당시상황 및 행동, 핸드레일 잡음 여부였다. 분석의 정확도는 76.7%로 설명되었고 분석방법 결과에 따르면 정확도와 유의수준 측에서 로지스틱회귀분석 방법이 도시철도 사상사고 예측모형을 개발하는데 유용한 데이터마이닝 기법으로 판단된다.

희귀 사건 로지스틱 회귀분석을 위한 편의 수정 방법 비교 연구 (Comparison of Bias Correction Methods for the Rare Event Logistic Regression)

  • 김형우;고태석;박노욱;이우주
    • 응용통계연구
    • /
    • 제27권2호
    • /
    • pp.277-290
    • /
    • 2014
  • 본 연구에서는 로지스틱 회귀 모형을 이용하여 보은 지방의 산사태 자료를 분석하였다. 5000 지역의 관측치 가운데 단 9개만이 산사태 발생 지역이므로 이 자료는 희귀 사건 자료로 간주될 수 있다. 로지스틱 회귀 분석 모형이 희귀사건 자료에 적용될 때 주요 이슈는 회귀 계수 추정치에 심각한 편의 문제가 생길 수 있다는 것이다. 기존에 두 가지의 편의 수정 방법이 제안되었는데, 본 논문에서는 시뮬레이션을 통해 정량적으로 비교 연구를 진행하였다. Firth(1993)의 방식이 다른 방법에 비해 우수한 성능을 보였으며, 이항 희귀 사건을 분석하는 데 있어서 매우 안정된 결과를 보여주었다.

로지스틱회귀분석기법과 인공신경망기법을 이용한 제주지역 산사태가능성분석 (The Landslide Probability Analysis using Logistic Regression Analysis and Artificial Neural Network Methods in Jeju)

  • 권혁춘;이병걸;이창선;고정우
    • 대한공간정보학회지
    • /
    • 제19권3호
    • /
    • pp.33-40
    • /
    • 2011
  • 본 연구에서는 제주지역의 산사태가능성을 분석하기 위하여 사람의 발길이 많은 사라봉, 별도봉 지역과 송악산 지역의 지형 및 토질공학적 사면 붕괴 유발 인자들을 이용하여 로지스틱회귀분석기법과 인공신경망기법을 GIS기법과 결합하여 예측지도를 작성하고 비교분석하였다. 산사태 예측지도를 작성하기 위해서 산사태 발생에 영향을 주는 사면경사, 고도, 건조밀도, 투수계수, 간극율을 선택하였으며 선정된 지역을 대상으로 실시한 야외조사와 토양물성시험 결과를 정리한 후 이를 토대로 GIS기법을 적용하여 각 레이어별 주제도를 작성하였다. 생성된 주제도를 각각 로지스틱회귀분석기법과 인공신경망기법으로 작성하여 비교분석한 결과 사면경사와 간극율의 경중률이 가장 높게 나타났고, 예측지도는 로지스틱회귀분석기법이 더욱 정확한 결과를 나타내었으며, 도로변과 산책로를 중심으로 산사태 발생가능성이 높게 분포하고 있음을 알 수 있었다.