• Title/Summary/Keyword: 로그수익률

Search Result 17, Processing Time 0.018 seconds

Independence test and distribution inference for log returns of KOSPI energy companies (코스피 에너지 기업들의 로그수익률에 대한 독립성 검정과 분포 추론 연구)

  • Yujin Lee;Soyeon Park;Eunju Hwang
    • The Korean Journal of Applied Statistics
    • /
    • v.37 no.6
    • /
    • pp.817-834
    • /
    • 2024
  • Energy industry is an essential factor not only in the lives of individuals but also in the national development of all fields. This paper aims to study the independence test and distribution of log returns for top 6 energy companies in KOSPI. A cross-analysis on combinations of the six energy companies is conducted for the independence test. The return distributions are explored by adopting compressed exponential distribution function, which is a role of bridge between the normal and exponential distributions. Optimal compressed parameters of the return distributions are determined by minimizing the mean square difference between the empirical density function and compressed exponential function. To access a refinement of the distribution, asymmetry or skewness are tested via the Wilcoxon signed rank test, and the asymmetric compressed exponential distributions are inferred on two sides of negative and nonnegative returns, respectively. The results of this work can help to provide an explicit analysis along with probabilistic information about the returns.

Dynamic Relationships between the Stock Index Futures Market and the Cash Market (주가지수선물시장과 현물시장간의 동적관련성에 관한 실증적 연구)

  • Jeong, Jae-Yeop;Seo, Sang-Gu
    • The Korean Journal of Financial Management
    • /
    • v.16 no.2
    • /
    • pp.337-364
    • /
    • 1999
  • 본 연구에서는 국내 주가지수선물시장과 현물시상간의 일중 가격 및 가격변동성의 선-후행관계를 실증적으로 분석함으로써 양 시장간의 동적관련성을 살펴보고자 하였다. 먼저, 상관관계분석의 결과는 KOSPI 200 주가지수선물수익률과 현물수익률, 그리고 주가지수선물수익률자승과 현물수익률 자승간에 유의한 교차상관관계가 존재하는 것으로 나타났다. 수익률의 선-후행관계를 살펴보기 위한 주가지수선물수익률의 시차변수들과 현물수익률간의 다중회귀분석의 결과는 주가지수선물수익률이 현물수익률을 약 15분 정도 선행하는 것으로 나타났으며, 이러한 현상은 현물수익률에 존재할 수 있는 비동시적 거래의 영향을 통제한 경우에도 비록 그 강도가 약하기는 하지만 여전하였다. 다음으로, 수익률 변동성의 선-후행관계를 살펴보기 위해 Grammatikos-Saunders (1986)가 제시한 무조건부 변동성의 추정치인 로그수익률자승을 사용하여 분석한 결과 주가지수선물수익률의 변동성이 현물수익률의 변동성을 약 10분 정도 선행하는 것으로 나타났으며, 이러한 결과는 비동시적 거래의 영향을 통제한 경우에도 동일하였다. 또한, Nelson(1991)의 EGARCH모형을 사용하여 수익률의 변동성을 추정한 후 이를 갖고 분석한 결과, 특히 비동시적 거래의 영향을 통제한 경우에는 주가지수선물시장과 현물시장의 수익률 변동성간에 선-후행관계가 존재한다는 것을 부정할 수 없었다.

  • PDF

Comparison of realized volatilities reflecting overnight returns (장외시간 수익률을 반영한 실현변동성 추정치들의 비교)

  • Cho, Soojin;Kim, Doyeon;Shin, Dong Wan
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.1
    • /
    • pp.85-98
    • /
    • 2016
  • This study makes an empirical comparison of various realized volatilities (RVs) in terms of overnight returns. In financial asset markets, during overnight or holidays, no or few trading data are available causing a difficulty in computing RVs for a whole span of a day. A review will be made on several RVs reflecting overnight return variations. The comparison is made for forecast accuracies of several RVs for some financial assets: the US S&P500 index, the US NASDAQ index, the KOSPI (Korean Stock Price Index), and the foreign exchange rate of the Korea won relative to the US dollar. The RV of a day is compared with the square of the next day log-return, which is a proxy for the integrated volatility of the day. The comparison is made by investigating the Mean Absolute Error (MAE) and the Root Mean Square Error (RMSE). Statistical inference of MAE and RMSE is made by applying the model confidence set (MCS) approach and the Diebold-Mariano test. For the three index data, a specific RV emerges as the best one, which addresses overnight return variations by inflating daytime RV.

부도시의 시장반응과 후속 기업재건 여부와의 관계

  • Park, Ju-Cheol;Lee, Nam-U
    • The Korean Journal of Financial Studies
    • /
    • v.11 no.1
    • /
    • pp.217-242
    • /
    • 2005
  • 본 연구에서는 부도기업의 부도 후 회생여부와 부도발생시의 주식시장의 반응과의 관계를 조사하였다. 즉 증권시장이 부도기업의 사후적인 회생 또는 회생실패에 대한 통찰력을 부도시에 이미 갖고 있는지를 부도처리시의 주가반응을 분석함으로써 검정하고자 하는 것이다. 이를 위하여 외환위기 후 상장기업의 부도가 빈발하였던 1998년에서 2000년 사이에 부도가 발생한 상장회사 55개 기업을 대상으로 후에 회생한 기업(31개기업)과 그렇지 못한 기업(24개 기업)을 구분하여 후에 회생한 기업의 부도시의 주가반응이 회생하지 못한 기업의 부도시의 주가반응보다 덜 부정적이었는지를 검정하였다. 실증분석 결과 부도기업 중 후에 회생한 기업(31개기업)의 분석기간 ($-10{\sim}+10$)중 평균초과수익률과 누적평균초과수익률이 비회생기업(24개기업)의 그것에 대하여 유의한 (+)의 차이가 나타나지 않았다. 또한 부도기업의 누적초과수익률을 종속변수로 하고 회생여부를 나타내는 더미변수, 전년도감사의견이 적정의견인지의 여부, 부채비율, 총자산(억원) 자연 로그값, 사전적 폭로정보 대용변수로서의 지난 1년간 주가반응을 의미하는 (-230, -11)윈도우 누적초과수익률을 독립변수로 하여 다중회귀분석을 실시하였으나 부도후 회생여부를 나타내는 더미변수의 회귀계수는 유의적이지 않았다. 따라서 초과수익률 차이분석결과 회생기업의 부도시의 주가반응이 비회생기업의 그것에 비하여 유의한 (+)의 차이가 없고, 또한 회귀분석 결과 부도시의 초과수익률과 부도후 회생여부는 유의한 관계가 없으므로 부도처리시의 주가반응에서 후에 회생하는 기업이 그렇지 않은 기업보다 덜 부정적일 것이다라는 연구가설은 기각된다.등에 대한 평가기준의 재정립이 강구되어야 할 것이다.한 변동성에서 큰 위험프리미엄이라는 연결고리를 거쳐 코리아 디스카운트라는 현상으로 귀착되는 현상에 주목하고 있는 본 연구의 결과가 실무에서 유용하게 사용됨은 물론이요 또한 본 연구의 방법론 자체가 매우 정교하고 포괄적이어서 금융시계열을 포함한 다른 여러 분야에 크게 응용될 수 있는 외부효과도 기대된다.R 효과는 전통적 의미의 일반적으로 낮은 PER종목이 초과수익률을 내는 것이 아니라, 기업규모가 크더라도 그 기업의 개별특성을 고려했을 때 이와 비교해 상대적으로 PER가 낮은 종목에 투자하면 초과수익을 낼 수 있음을 의미한다. 발견하였다.적 일정하게 하는 소비행동을 목표로 삼고 소비와 투자에 대한 의사결정을 내리고 있음이 실증분석을 통하여 밝혀졌다. 투자자들은 무위험 자산과 위험성 자산을 동시에 고려하여 포트폴리오를 구성하는 투자활동을 행동에 옮기고 있다.서, Loser포트폴리오를 매수보유하는 반전거래전략이 Winner포트폴리오를 매수보유하는 계속거래전략보다 적합한 전략임을 알 수 있었다. 다섯째, Loser포트폴리오와 Winner포트폴리오를 각각 투자대상종목으로써 매수보유한 반전거래전략과 계속거래 전략에 대한 유용성을 비교검증한 Loser포트폴리오와 Winner포트폴리오 각각의 1개월 평균초과수익률에 의하면, 반전거래전략의 Loser포트폴리오가 계속거래전략의 Winner포트폴리오보다 약 5배정도의 높은 1개월 평균초과수익률을 실현하였고, 반전거래전략의 유용성을 충분히 발휘하기 위하여 장단기의 투자기간을 설정할 경우에 6개월에서 36개월로 이동함에 따라 6개월부터 24개월까지는 초과수익률이 상승하지만, 이후로는 감소하므로, 반전거래전략을

  • PDF

A Bayesian Extreme Value Analysis of KOSPI Data (코스피 지수 자료의 베이지안 극단값 분석)

  • Yun, Seok-Hoon
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.833-845
    • /
    • 2011
  • This paper conducts a statistical analysis of extreme values for both daily log-returns and daily negative log-returns, which are computed using a collection of KOSPI data from January 3, 1998 to August 31, 2011. The Poisson-GPD model is used as a statistical analysis model for extreme values and the maximum likelihood method is applied for the estimation of parameters and extreme quantiles. To the Poisson-GPD model is also added the Bayesian method that assumes the usual noninformative prior distribution for the parameters, where the Markov chain Monte Carlo method is applied for the estimation of parameters and extreme quantiles. According to this analysis, both the maximum likelihood method and the Bayesian method form the same conclusion that the distribution of the log-returns has a shorter right tail than the normal distribution, but that the distribution of the negative log-returns has a heavier right tail than the normal distribution. An advantage of using the Bayesian method in extreme value analysis is that there is nothing to worry about the classical asymptotic properties of the maximum likelihood estimators even when the regularity conditions are not satisfied, and that in prediction it is effective to reflect the uncertainties from both the parameters and a future observation.

Functional ARCH analysis for a choice of time interval in intraday return via multivariate volatility (함수형 ARCH 분석 및 다변량 변동성을 통한 일중 로그 수익률 시간 간격 선택)

  • Kim, D.H.;Yoon, J.E.;Hwang, S.Y.
    • The Korean Journal of Applied Statistics
    • /
    • v.33 no.3
    • /
    • pp.297-308
    • /
    • 2020
  • We focus on the functional autoregressive conditional heteroscedasticity (fARCH) modelling to analyze intraday volatilities based on high frequency financial time series. Multivariate volatility models are investigated to approximate fARCH(1). A formula of multi-step ahead volatilities for fARCH(1) model is derived. As an application, in implementing fARCH(1), a choice of appropriate time interval for the intraday return is discussed. High frequency KOSPI data analysis is conducted to illustrate the main contributions of the article.

Stochastic Volatility Models Using Bayesian Estimation for the Leverage Effect of Dry-bulk Freight Rate (건화물선 운임의 레버리지 효과 대한 확률 변동성 모형을 활용한 베이지안 추정)

  • Kim, Hyun-Sok
    • Journal of Korea Port Economic Association
    • /
    • v.38 no.4
    • /
    • pp.13-23
    • /
    • 2022
  • In this study, from January 2015 to April 2020, we propose a stochastic volatility model to capture the leverage effect on daily freight yields in the dry cargo market and analyze the freight yields. Estimation involving the Bayesian Markov Chain Monte Carlo method for the leverage effect based on the negative correlation that exists between returns and volatility in stochastic volatility analysis yields similar estimates, and the statistcs indicates significant. That is, the results of the empirical analysis show that the degree of correlation between returns and volatility, and the magnitude and sign of fluctuations differ, which suggests that taking into account the leverage effect in the SV model improves the goodness of fit of the estimates. In addition to the statistical significance of the estimated model's leverage effect, the analysis by log predictive power score presents the estimated results with improved predictive power of the model considering the leveraged effect. These astatistically significant empirical results show that the stochastic volatility model considering the leverage effect is important for freight rate risk modeling in the marine industry.

Predicting the success of CDM Registration for Hydropower Projects using Logistic Regression and CART (로그 회귀분석 및 CART를 활용한 수력사업의 CDM 승인여부 예측 모델에 관한 연구)

  • Park, Jong-Ho;Koo, Bonsang
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.2
    • /
    • pp.65-76
    • /
    • 2015
  • The Clean Development Mechanism (CDM) is the multi-lateral 'cap and trade' system endorsed by the Kyoto Protocol. CDM allows developed (Annex I) countries to buy CER credits from New and Renewable (NE) projects of non-Annex countries, to meet their carbon reduction requirements. This in effect subsidizes and promotes NE projects in developing countries, ultimately reducing global greenhouse gases (GHG). To be registered as a CDM project, the project must prove 'additionality,' which depends on numerous factors including the adopted technology, baseline methodology, emission reductions, and the project's internal rate of return. This makes it difficult to determine ex ante a project's acceptance as a CDM approved project, and entails sunk costs and even project cancellation to its project stakeholders. Focusing on hydro power projects and employing UNFCCC public data, this research developed a prediction model using logistic regression and CART to determine the likelihood of approval as a CDM project. The AUC for the logistic regression and CART model was 0.7674 and 0.7231 respectively, which proves the model's prediction accuracy. More importantly, results indicate that the emission reduction amount, MW per hour, investment/Emission as crucial variables, whereas the baseline methodology and technology types were insignificant. This demonstrates that at least for hydro power projects, the specific technology is not as important as the amount of emission reductions and relatively small scale projects and investment to carbon reduction ratios.

Asset Pricing From Log Stochastic Volatility Model: VKOSPI Index (로그SV 모형을 이용한 자산의 가치평가에 관한 연구: VKOSPI 지수)

  • Oh, Yu-Jin
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.1
    • /
    • pp.83-92
    • /
    • 2011
  • This paper examines empirically Durham's (2008) asset pricing models to the KOSPI200 index. This model Incorporates the VKOSPI index as a proxy for 1 month integrated volatility. This approach uses option prices to back out implied volatility states with an explicitly speci ed risk-neutral measure and risk premia estimated from the data. The application uses daily observations of the KOSPI200 and VKOSPI indices from January 2, 2003 to September 24, 2010. The empirical results show that non-affine model perform better than affine model.

Refining massive event logs to evaluate performance measures of the container terminal (컨테이너 터미널 성능평가를 위한 대용량 이벤트 로그 정제 방안 연구)

  • Park, Eun-Jung;Bae, Hyerim
    • The Journal of Bigdata
    • /
    • v.4 no.1
    • /
    • pp.11-27
    • /
    • 2019
  • There is gradually being a decrease in earnings rate of the container terminals because of worsened business environment. To enhance global competitiveness of terminal, operators of the container terminal have been attempting to deal with problems of operations through analyzing overall the terminal operations. For improving operations of the container terminal, the operators try to efforts about analyzing and utilizing data from the database which collects and stores data generated during terminal operation in real time. In this paper, we have analyzed the characteristics of operating processes and defined the event log data to generate container processes and CKO processes using stored data in TOS (terminal operating system). And we have explained how imperfect event logs creating non-normal processes are refined effectively by analyzing the container and CKO processes. We also have proposed the framework to refine the event logs easily and fast. To validate the proposed framework we have implemented it using python2.7 and tested it using the data collected from real container terminal as input data. In consequence we could have verified that the non-normal processes in the terminal operations are greatly improved.

  • PDF