• Title/Summary/Keyword: 레이더 표적신호

Search Result 101, Processing Time 0.031 seconds

An Information Fusion of Radar and Electronic Intelligence System with Direction Data (방향자료를 이용한 레이더와 전자정보 장비의 정보융합)

  • Lim, Joong-Soo;Choi, Chang-Min;Kim, Sang-Kyu
    • Proceedings of the KAIS Fall Conference
    • /
    • 2006.11a
    • /
    • pp.242-244
    • /
    • 2006
  • 본 논문에서는 레이더와 전자정보에서 획득한 방향정보 자료를 이용해서 전자파 정보를 융합하는 기술을 제시한다. 레이더에서 획득한 표적신호와 전자정보에서 획득한 정보신호를 융합하면 표적을 정확하게 확인할 수 있기 때문에 레이더의 탐지 오차율이 줄어들고 표적에 대한 상세 정보를 확보할 수 있어서 표적식별이나 목표물 선정에 쉽게 사용할 수 있다.

  • PDF

(An Implementation of Timing Signal Board to Analyze the EA Effect for Coherent Radar Systems) (위상정합 레이더에 대한 EA효과 분석용 타이밍 신호발생기)

  • Sin, Hyeon-Ik;Im, Jung-Su;Kim, Hwan-U
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.39 no.2
    • /
    • pp.116-122
    • /
    • 2002
  • A timing signal board which can be used to analyze EA effect for coherent radar systems is introduced. It is capable of generating the timing signals that are needed for EA test about radar systems in real time. Its function to generate baseband target signal makes it easy to analyze EA effect. Because all parameters of timing signals can be changed by software, it is very easy to configure many kinds of test scenarios.

Radar Return Signal Simulation Equipment Using MC-DDS (Multi-Channel Direct Digital Synthesis) (다채널 직접 디지털 합성을 이용한 레이더 반사 신호 모의 장치)

  • Roh, Ji-Eun;Yang, Jin-Mo;Yoo, Gyung-Joo;Gu, Young-Suk;Lee, Sang-Hwa;Song, Sung-Chan;Lee, Hee-Young;Choi, Byung-Gwan;Lee, Min-Joon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.10
    • /
    • pp.966-980
    • /
    • 2011
  • Radar receiving echo signal provides target information - range, velocity and position by signal magnitude and Doppler shift, which are determined by target reflection characteristics and target maneuver. Target angle error is extracted from the magnitude ratio of difference channel to sum channel. In this paper, we introduce a radar Return Signal Simulation Equipment(RSSE) which is implemented for the purpose of performance analysis and evaluation of phased array multi-function radar(MFR). It generates multi-target environment with jamming signals using MC-DDS (Multi-Channel Direct Digital Synthesis), and has scalability by using the efficient hardware configuration. The performance of the developed RSSE has been evaluated under various test environments. Especially, we proved that required target detection performance is achieved by RSP(Radar Signal Processor) interfaced RSSE configuration.

A Study on Radar Received Power based on Target Observing Position (표적 관측 위치에 따른 레이더 수신 전력에 관한 연구)

  • Park, Tae-Yong;Lee, Yura
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.3063-3068
    • /
    • 2014
  • Since the RCS(Radar Cross Section) of target is important factor to determine radar performance, it is important to locate radar where large RCS is observed. However, the distance between the target and the radar is an important factor of the received power, as well as RCS. In this paper, it is calculated that received power from ballistic missile to radar based on different observed position and it is studied that to place radar for high detection efficiency.

A Study on the Improvement of Naval Surveillance Radar to Solve the Target Display Problem (함정용 탐색레이더의 표적 전시상태 개선에 관한 연구)

  • Sim, Min-Seop;Lee, Ji-Hyeog;Jeong, Hyeon-Seob
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.21 no.10
    • /
    • pp.541-546
    • /
    • 2020
  • The surveillance radar for naval ships is an essential equipment of a battle system that executes the detection and tracking of targets, and the shooting support function; it calculates the three-dimensional track of the target range, azimuth, and altitude to carry out its duty. The surveillance radar consists of an antenna, a transceiver, a processing unit, and an air dryer section. The radar radiates the transmission signal on the antenna section, receives the reflected signal from the target, and amplifies the signals on the transceiver section. The signal received from the antenna is used to provide the operator with target information in various ways. This study identified the display problems when the information about the target is displayed through the radar. The causes of the problems were analyzed and improved. The tracking disappearance phenomenon caused by the altered-course of the ship was improved on the TWS tracking algorithm. The validity of the improved TWS tracking algorithm was confirmed by the normal condition of the target status on the B-scope.

Realization of Multi-purpose Coherent Monopulse Radar Simulator with Expandable Feature (확장성을 갖는 다목적 코히어런트 모노펄스 레이더 시뮬레이터 구현)

  • Kim, Jae-Jun;Lee, Jong-Pil;Rhee, Ill-Keun
    • Journal of IKEEE
    • /
    • v.8 no.1 s.14
    • /
    • pp.39-46
    • /
    • 2004
  • This paper presents the realization schemes for a multipurpose coherent mono-pulse radar Simulator with extendable features. We developed and installed the TSG(Timing Signal Generator) board which can simulate a mechanically rotate signal of antenna, an operation timing signal of pulse radar and target signal, to operate the simulator without real target in the indoor environment. Also, with the insertion of the radar signal processor, it came to be easy to achieve the addition of radar function algorithms, to rebuild or extend the multi-DSP Architecture into the simulator. Throughout the simulation results, we verified that the designed coherent mono-pulse radar simulator can exactly display a moving target on the realistic monitor(RD 9800).

  • PDF

A Study on the Methods to Simulate the Target Reflective Signal in a Wideband Radar (광대역 레이더의 표적 반사 신호 모의 방법에 관한 연구)

  • Kim, EunHee;Kim, TaeHyung;Kim, Sun-Ju
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.2
    • /
    • pp.179-188
    • /
    • 2015
  • Testing a radar system in real environment requires a lot of time and cost. Thus various target simulators are developed to evaluate the radar performance and its functions as well. In order to enhance the range resolution and the accuracy for tracking, recent radar system tends to use the wideband signal. In this paper, we summarize two target simulation methods - the direct sampling method with the digital memories and the beat frequency generation for the stretch processing - and suggest the condition to improve their performance for a wideband radar system.

A Preprocessing Method for Ground-Penetrating-Radar based Land-mine Detection System (지면 투과 레이더(GPR) 기반의 지뢰 탐지 시스템을 위한 표적 후보 검출 기법)

  • Kong, Hae Jung;Kim, Seong Dae;Kim, Minju;Han, Seung Hoon
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.4
    • /
    • pp.171-181
    • /
    • 2013
  • Recently, ground penetrating radar(GPR) has been widely used in detecting metallic and nonmetallic buried landmines and a number of related researches have been reported. A novel preprocessing method is proposed in this paper to flag potential locations of buried mine-like objects from GPR array measurements. GPR operates by measuring the reflection of an electromagnetic pulse from discontinuities in subsurface dielectric properties. As the GPR pulse propagates in the geologic medium, it suffers nonlinear attenuation as the result of absorption and dispersion, besides spherical divergence. In the proposed algorithm, a logarithmic transformed regression model which successfully represents the time-varying signal amplitude of the GPR data is estimated at first. Then, background signals may be densely distributed near the regression model and candidate signals of targets may be far away from the regression model in the time-amplitude space. Based on the observation, GPR signals are decomposed into candidate signals of targets and background signals using residuals computed from the estimated value by regression and the measurement of GPR. Candidate signals which may contain target signals and noise signals need to be refined. Finally, targets are detected through the refinement of candidate signals based on geometric signatures of mine-like objects. Our algorithm is evaluated using real GPR data obtained from indoor controlled environment and the experimental results demonstrate remarkable performance of our mine-like object detection method.

An Analysis of Information Fusion Characteristics between Radar and Electronic Intelligence System (레이더와 전자정보 장비의 정보융합 특성 분석)

  • Lim, Joong-Soo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.847-851
    • /
    • 2006
  • This paper presents a technology of information fusion between radar and electronic intelligence system. Radar can get range and direction information of targets and electronic intelligence system can get direction and electromagnetic information of targets which can be fused and identified together. We designed an information fusion unit in which information data is able to be added and compared and designed a display unit in which a fused information is totally displayed.

  • PDF

Development of High-Speed Real-Time Signal Processing for 3D Surveillance Radar (3차원 탐색 레이더용 고속 실시간 신호처리기 개발)

  • Bae, Jun-Woo;Kim, Bong-Jae;Choi, Jae-Hung;Jeong, Lae-Hyung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.24 no.7
    • /
    • pp.737-747
    • /
    • 2013
  • A 3-D surveillance radar is a pulsed-doppler radar to provide various target information, such as range, doppler and angle by performing TWS. This paper introduces HW/SW architecture of radar signal processing board to process in real-time using high-speed multiple DSP(Digital Signal Processor) based on COTS. Moreover, we introduced a implemented algorithm consisted of clutter map creation/renewal, FIR(Finite Impulse Response) filter for rejection of zero velocity components, doppler filter, hybrid CFAR and finally presented computational burden of each algorithm by performing operational test using a beacon.