• 제목/요약/키워드: 램버트 함수

검색결과 5건 처리시간 0.018초

램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화 (The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source)

  • 송현정;나상신
    • 한국통신학회논문지
    • /
    • 제27권6A호
    • /
    • pp.524-532
    • /
    • 2002
  • 이 논문은, 램버트 W 함수가 라플라스 신호원에 대한 최적 (최소평균제곱오차) 양자기의 비반복적 설계에 이용될 수 있다는 사실을 보고한다. 구체적으로, 라플라스 신호원에 최적인 양자기의 비반복적 설계법을 고찰하며, 설계에 필수적인 비선형 방정식의 점화식의 풀이가 램버트 W 함수를 사용한 닫힌 식으로 표현된다는 것을 발견하였고, 또 이 논문에서는 이 설계법이 지수함수 형태나 라플라스 확률밀도함수 형태를 갖는 신호원에만 적용된다는 것을 증명하였다. 이 논문의 기여점은, 양자기의 설계가 비반복적이며, 원하는 만큼의 정확도로 설계되기 때문에 설계에 필요한 계산 회수가 감소되고, 양자점과 경계값을 구하는데 있어 높은 정확도를 갖는다는 점이다. 또한, 수치결과를 통하여 최적 양자 왜곡이 팬터-다잇 상수에 단조 증기적으로 수렴하는 과정을 관찰하였으며, 최적 양자기의 최외곽 경계값인 중요변수의 근사식을 유도하였다.

램버트 W 함수를 사용한 라플라스 신호의 최소 평균제곱오차 양자화 (The Lambert W Function in the Design of Minimum Mean Square-Error Quantizers for a Laplacian Source)

  • 송현정;나상신
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(1)
    • /
    • pp.333-336
    • /
    • 2001
  • This paper reports that the Lambert W function applies to a non-iterative design of minimum mean square-error scalar quantizers for a Laplacian source. The contribution of the paper is in the reduction of the time needed for the design and the increased accuracy in resulting quantization points and thresholds, because the algorithm is non-iterative and the Lambert W function can be evaluated as accurately as desired.

  • PDF

시간지연을 갖는 특이 섭동 시스템에서 H놈과 램버트 W 함수를 이용한 안정화 제어기 설계 (Stabilizing Controller Design for Time-delay Singularly Perturbed Systems by H Norm and Lambert W Function)

  • 김범수
    • 전기학회논문지
    • /
    • 제62권8호
    • /
    • pp.1144-1150
    • /
    • 2013
  • The stabilizing controller design problem of time-delay singularly perturbed systems is considered. The proposed approach is based on the $H_{\infty}$ norm and the composite control method. A sufficient condition for the stability of the time-delay slow subsystem is presented. Using this condition, we can construct the composite control law for the time-delay singularly perturbed system and analysis the system by the matrix Lambert W function. Illustrated examples are presented to demonstrate the validity and applicability of the proposed method.

램버트 W 함수를 이용한 시간지연 순수 특이 섭동 시스템 안정화 제어기 설계 (Stabilizing Controller Design for Time-Delay Pure Singularly Perturbed Systems via Lambert W Function)

  • 김범수;안수환
    • 동력기계공학회지
    • /
    • 제18권1호
    • /
    • pp.120-127
    • /
    • 2014
  • In this study, Design methods of stabilizing controller for time-delay pure singularly perturbed systems are proposed. Based on the Chang transformation and Lambert W function, we decompose the time-delayed pure singularly perturbed systems into completely decoupled subsystems and derive sufficient stability conditions for $2{\times}2$ time-delayed pure singularly perturbed systems. An illustrated example is presented to demonstrate the validity and applicability of the proposed methods.

Lambert W 함수를 이용한 태양전지 모델링 (The solar cell modeling using Lambert W-function)

  • 배종국;강기환;김경수;유권종;안형근;한득영
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 추계학술발표대회 논문집
    • /
    • pp.278-281
    • /
    • 2011
  • This system can predict the maximum output about all illumination levels so that the PV system designer can design the system having the best efficiency. For the output prediction exact about the solar cell, that is the device the basis most in the PV system, the basis has to be in order to try this way. The solution based on Lambert W-function are presented to express the transcendental current-voltage characteristic containing parasitic power consuming parameters like series and shunt resistances. A simple and efficient method for the extraction of a single current-voltage (I-V) curve under the constant illumination level is proposed. With the help of the Lambert W function, the explicit analytic expression for I is obtained. And the explicit analytic expression for V is obtained. This analytic expression is directly used to fit the experimental data and extract the device parameters. The I-V curve of the solar cell was expressed through the modeling using Lambert W-function and the numerical formula where there is the difficulty could be logarithmically expressed This method expresses with the I-V curve through the modeling using Lambert W-function which adds other loss ingredients to the equation2 as to the research afterward. And the solar cell goes as small and this I-V curve can predict the power penalty in the system unit.

  • PDF