• Title/Summary/Keyword: 램버시안반사

Search Result 5, Processing Time 0.024 seconds

저궤도 상에서의 Ashen light 관측을 통한 통합적 광선 추적 수치 모사

  • Yu, Jin-Hui;Ryu, Dong-Ok;Kim, Seok-Hwan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.26.2-26.2
    • /
    • 2010
  • 이 연구는 Ashen light 측정을 통해 전 지구 반사율을 구하는 통합적 광선 추적 모델을 구성하고 그 수치모사 성능을 검증하는데 목적을 두고 있다. 통합적 광선 추적 모델은 태양-지구-달 시스템에 대하여 태양 복사에너지의 광경로를 추적함으로써 최종적으로 저궤도 상에 존재하는 광학계에 도달하는 Ashen light과 moonshine의 조도를 수치 모사하는 기법이다. Ashen light은 구형의 태양에서 출발한 $1.626\times10^{26}W$의 에너지를 가지는 400nm에서 700nm 파장대역의 빛이 램버시안 특성을 지니는 구형의 지구에서 반사된 후 램버시안 특성을 가지는 구형의 달에서 재 반사되어 저궤도상의 광학계로 입사하는 빛이고, moonshine은 달에서 직접 반사되어 저궤도상의 광학계로 입사하는 빛이다. 통합적 광선 추적 수치 모사를 이용하여 구한 Ashen light과 moonshine의 조도는 1차 근사 해석적 방법을 이용한 계산 결과와 측정 오차 범위 이내의 오차를 보였다. 최종 연구 결과 Ashen light과 moonshine의 조도를 이용하여 구한 지구 반사율과 1차 근사 해석적 방법을 이용한 지구 반사율 계산의 결과가 유사함을 증명하였다.

  • PDF

Characteristics of the Laser Displacement Sensor Using Optical Triangulation Method (광삼각법을 이용한 레이저 변위 센서의 특성 연구)

  • Park, Jong-Sung;Jeong, Kyu-Won
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.7
    • /
    • pp.40-50
    • /
    • 1999
  • Recently, a laser displacement sensor is widely used for the manufacturing automation. The sensor is generally composed of a diode laser and a light receiving device. The diode laser emits a laser beam and the receiving device detects the light reflected from the measured object. The object position is obtained based upon triangulation method. As a light receiving device, a PSD is usually utilized since its structure is very simple and rugged and has a high accuracy. Although the theoretical relationship for this sensor had been developed, the characteristics of the sensor have not been much experimentally studied. In this paper, several experimental results will presented. The measurement accuracy is affected by the surface conditions such as the reflectance characteristics, the angle of the object's surface and the laser intensity. In addition, it is found that the PSD and the signal processing circuit have nonlinearities and showed that those nonlinearities can be reduced by controlling the emitting laser intensity.

  • PDF

Impact of Lambertian Cloud Top Pressure Error on Ozone Profile Retrieval Using OMI (램버시안 구름 모델의 운정기압 오차가 OMI 오존 프로파일 산출에 미치는 영향)

  • Nam, Hyeonshik;Kim, Jae Hawn;Shin, Daegeun;Baek, Kanghyun
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.3
    • /
    • pp.347-358
    • /
    • 2019
  • Lambertian cloud model (Lambertian Cloud Model) is the simplified cloud model which is used to effectively retrieve the vertical ozone distribution of the atmosphere where the clouds exist. By using the Lambertian cloud model, the optical characteristics of clouds required for radiative transfer simulation are parametrized by Optical Centroid Cloud Pressure (OCCP) and Effective Cloud Fraction (ECF), and the accuracy of each parameter greatly affects the radiation simulation accuracy. However, it is very difficult to generalize the vertical ozone error due to the OCCP error because it varies depending on the radiation environment and algorithm setting. In addition, it is also difficult to analyze the effect of OCCP error because it is mixed with other errors that occur in the vertical ozone calculation process. This study analyzed the ozone retrieval error due to OCCP error using two methods. First, we simulated the impact of OCCP error on ozone retrieval based on Optimal Estimation. Using LIDORT radiation model, the radiation error due to the OCCP error is calculated. In order to convert the radiation error to the ozone calculation error, the radiation error is assigned to the conversion equation of the optimal estimation method. The results show that when the OCCP error occurs by 100 hPa, the total ozone is overestimated by 2.7%. Second, a case analysis is carried out to find the ozone retrieval error due to OCCP error. For the case analysis, the ozone retrieval error is simulated assuming OCCP error and compared with the ozone error in the case of PROFOZ 2005-2006, an OMI ozone profile product. In order to define the ozone error in the case, we assumed an ideal assumption. Considering albedo, and the horizontal change of ozone for satisfying the assumption, the 49 cases are selected. As a result, 27 out of 49 cases(about 55%)showed a correlation of 0.5 or more. This result show that the error of OCCP has a significant influence on the accuracy of ozone profile calculation.

Design and Fabrication of Light Guiding Plate for Photobioreactor (광생물 반응기를 위한 도광판 설계 및 제작)

  • Park, Gi Chan;Kim, Hun;Shin, Seong Seon;Shin, Hyun Keel;Kim, Jongtye;Jeong, Sanghwa;Park, Jong Rak
    • Korean Journal of Optics and Photonics
    • /
    • v.23 no.2
    • /
    • pp.55-63
    • /
    • 2012
  • We present results of optical design and fabrication of a light guiding plate (LGP) to be used as an illumination system for photobioreactors. Modeling of a light-emitting diode (LED) light source, a reflection film, and LGP patterns was performed. Especially, the LGP patterns were modeled as Lambertian scatterers. The modeling parameters (reflectance, scatterer width) were determined through matching simulations with the experimentally measured illuminance distribution for a test LGP. An LGP for an LED light source was designed with the extracted model parameters, and fabricated using a computerized numerical control machine. Optical characteristics including average illuminance and uniformity of illuminance distribution were measured for the fabricated LGP.

Observation Test of Field Surface Reflectance Using Vertical Rotating Goniometer on Tarp Surface and Grass (수직 축 회전형 측각기 제작 및 야외 지표면 반사도 관측 시험: 타프와 잔디에서)

  • Moon, Hyun-Dong;Jo, Euni;Kim, Hyunki;Cho, Yuna;Kim, Bo-Kyeong;Ahn, Ho-Yong;Ryu, Jae-Hyun;Cho, Jaeil
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1207-1217
    • /
    • 2022
  • Vegetation indices using the reflectance of selected wavelength, associating with the monitoring purpose such as identifying the progress of crop growth, on the vegetation canopy surface is widely used in the digital agriculture technology. However, the surface reflectance anisotropy can distort the true value of vegetation index related to the condition of surface, even though the surface property be unchanged. That causes difficulty to observe accurately crop growth on the monitoring system. In this study, a simple type goniometer was designed to measure the reflectance from the anisotropic surface according to various zeniths and azimuths of sun and viewing sensor in the field. On the tarp like as Lambertian surface, the reflectance of Blue, Green, Red, Near-Infrared band was similar to the tarps' reflectance properties. However, the reflectance was slightly overestimated in the cloudy day. The relative difference values of vegetation indices on grass were overestimated for the forward viewing and underestimated for the backward viewing. In addition, enhanced vegetation index (EVI) showed less sensitive according to the positions of sun and sensor viewing. Field observation with a goniometer will be helpful to understand the anisotropy characteristics on the vegetation surface.