• 제목/요약/키워드: 랜덤 진동

검색결과 146건 처리시간 0.07초

LabVIEW를 이용한 Exciter 가진시험 모듈 개발 (Developing the Excitation Testing Module with LabVIEW)

  • 최기수;정의봉;원성규;안세진
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2007년도 추계학술대회논문집
    • /
    • pp.37-41
    • /
    • 2007
  • Fast Fourier Transformation(FFT) is one of the most useful way to analyze response signal for the purpose of grasping the dynamic characteristics of system. Excitation is a factor or process making noise or vibration. It's typical and simple experimental method widely used for catching hold of dynamic peculiar characters and modal behaviors of system by frequency analysis. There are harmonic excitation, impact excitation, random excitation, sweep excitation, chirp excitation and so on as the ideal method in an experiment using exciter. In this thesis, excitation testing module for NI-PXI equipment is developed. The analyzing module is developed with LabVIEW tool. A user can generate each waveform for shaking a structure and see quickly and easily modal shape of system with this module. This developed module will be expected to build up more convenient and serviceable measurement system.

  • PDF

발사환경에 대한 위성 전장품의 구조진동 해석 (Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments)

  • 정일호;박태원;한상원;서종휘;김성훈
    • 한국정밀공학회지
    • /
    • 제21권8호
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.

입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가 (Comparison of Fatigue Damage of Linear Elastic System with Respect to Vibration Input Conditions)

  • 허윤석;김찬중
    • 한국소음진동공학회논문집
    • /
    • 제24권6호
    • /
    • pp.437-443
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random(SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

입력가진 조건에 따른 선형 시스템의 피로손상도 비교 평가 (Comparison of fatigue damage of linear elastic system with respect to vibration input conditions)

  • 김찬중;허윤석
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2014년도 춘계학술대회 논문집
    • /
    • pp.340-345
    • /
    • 2014
  • Vibration testing is conducted for evaluate the fatigue resistance of responsible system over excitation situations and two kinds of vibration profiles, harmonic or random, are widely used in engineering fields. Harmonic excitation profile is adequate for the rotating machinery that is primarily exposed to the orderly excited force subjected for a rotating speed; Random profile is suitable for the non-stationary vibration input, that is a ground excitation for example. Recently, the sine on random (SOR) testing method was sometimes considered to represent the real excitation conditions since the measured response signals of a target system, expecially for moving mobility, shows usually a mixture of them. So, it is important to understand the accumulated fatigue damage over different excitation patterns, harmonic and/or random, to determine the efficient vibration profile of a target system. A uniaxial vibration testing with a notched simple beam was introduced to evaluate the fatigue damage for different excitation profiles and the best choice of vibration profile was concluded from those comparison of calculated fatigue damages.

  • PDF

랜덤 진동에 의한 포장화물 및 포장된 사과의 진동특성 (Vibration Characteristics of Packaged Freight and Packaged Apples by Random Vibration Input)

  • 김기석;정현모;김기복;김만수
    • Journal of Biosystems Engineering
    • /
    • 제33권1호
    • /
    • pp.45-50
    • /
    • 2008
  • Shock and vibration inputs are transmitted from the transporting vehicle through the packaging box to the fruit. The vibration causes sustained bouncing of fruits against each other and the container wall. The steady state vibration input may cause serous fruit injury, and the damage is particularly severe if the fruits are bounced at its resonance frequency. The determination of the resonance frequencies of the fruits and vegetables may help the packaging designer to design the proper packaging system providing adequate protection of the fruits from external impact or shock. In this study, to analyze the vibration properties of the apples for optimum packaging design during transportation, the random vibration tests were carried out. From the results of random vibration test, the resonance frequency and power spectral density (PSD) of the packaged freight of apples in the test were in the range of 82 to 97 Hz and 0.0013 to 0.0021 $G^2/Hz$ respectively and the resonance frequency and PSD of the packaged apples were in the range of 13 to 71 Hz and 0.0143 to 0.0923 $G^2/Hz$ respectively.

향상된 인공생명 최적화 알고리듬의 개발과 소폭 저널 베어링의 최적설계 (Development of an Enhanced Artificial Life Optimization Algorithm and Optimum Design of Short Journal Bearings)

  • 양보석;송진대
    • 한국소음진동공학회논문집
    • /
    • 제12권6호
    • /
    • pp.478-487
    • /
    • 2002
  • This paper presents a hybrid method to compute the solutions of an optimization Problem. The present hybrid algorithm is the synthesis of an artificial life algorithm and the random tabu search method. The artificial life algorithm has the most important feature called emergence. The emergence is the result of dynamic interaction among the individuals consisting of the system and is not found in an individual. The conventional artificial life algorithm for optimization is a stochastic searching algorithm using the feature of artificial life. Emergent colonies appear at the optimum locations in an artificial ecology. And the locations are the optimum solutions. We combined the feature of random-tabu search method with the conventional algorithm. The feature of random-tabu search method is to divide any given region into sub-regions. The enhanced artificial life algorithm (EALA) not only converge faster than the conventional artificial life algorithm, but also gives a more accurate solution. In addition, this algorithm can find all global optimum solutions. The enhanced artificial life algorithm is applied to the optimum design of high-speed, short journal bearings and its usefulness is verified through an optimization problem.

작동기 히스테리시스를 고려한 유연 피에조빔의 위치추적제어 (Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis)

  • 프엉박;최승복
    • 한국소음진동공학회논문집
    • /
    • 제20권2호
    • /
    • pp.129-137
    • /
    • 2010
  • 이 논문에서는 압전작동기를 이용하여 유연 보 구조물의 위치추적제어를 실험적으로 고찰하였다. 작동기의 히스테리시스 특성을 보상하기 위한 앞먹임 보상기와 PID 되먹임 제어기를 함께 구성하여 정밀한 위치 추적제어를 수행할 수 있도록 하였다. 히스테리시스 보상기는 압전작동기의 예측 변위를 바탕으로 한 프라이작 모델을 사용하여 구성하였다. 히스테리시스 보상기의 유무에 따른 PID 되먹임 제어의 성능을 조화가진과 랜덤 가진 실험을 통하여 평가하였으며, 보상기와 되먹임 제어기를 함께 사용하였을 때, 우수한 위치추적제어 성능을 가지는 것을 확인하였다.

마이크로중력 과학 임무 수행용 초소형 위성의 진동 해석 (Vibration Analysis of a Nanosatellite for Microgravity Science Missions)

  • 김진혁;장정익;박설현
    • 한국기계가공학회지
    • /
    • 제18권12호
    • /
    • pp.104-110
    • /
    • 2019
  • A nanosatellite designed by the Korea Microgravity Science Laboratory (KMSL) is currently under development. The KMSL nanosatellite is designed to perform two different scientific missions in space. To successfully complete missions, a variety of tests must be conducted to verify the performance of the designed satellite before launch. As part of the qualification test campaign, the KMSL nanosatellite underwent high level vibrational tests (to comply with Falcon 9 qualification level) to demonstrate the integrity of the system. The purpose of this study is to demonstrate that the primary structure and all electronic and mechanical components can withstand the vibrations and the loads experienced during the launch period. To this end, the KMSL nanosatellite was exposed to static and dynamic loads and various types of vibrations that are inevitably produced during the space vehicle launch period. The vibration test results clearly demonstrated that all avionics and mechanical components can withstand the vibrations and the loads applied to the KMSL nanosatellite's body through a Pico-satellite Orbital Deployer (POD).

머리전달함수 측정법의 실험적 비교 (Comparison of Measurement Methods for Head-related Transfer Function(HRTF))

  • 안태수;이두호
    • 한국소음진동공학회논문집
    • /
    • 제19권12호
    • /
    • pp.1260-1268
    • /
    • 2009
  • Three methods(the stepped sine method, the statistical method(random excitation method) and the maximum-length sequence(MLS) method) for head-related transfer functions(HRTFs) are experimentally compared in view point of accuracy and efficiency. First, the stepped sine method has high signal-to-noise ratio, but low efficiency. Second, the statistical method is fast measurement speed, but weak to noise than the other methods. Finally, the MLS method shows both good efficiency and high signal-to-noise ratio, but it needs additional software or equipment such as MLS signal generator. For comparison of measurement accuracy, HRTFs of KEMAR dummy are measured for various azimuths and elevations. Error norms for magnitude and phase of HRTFs are defined and calculated for the measured HRTFs. The calculated error norms show that the methods give similar results in magnitude and phase except a little phase difference in the MLS method.

전투기 레이다용 전자부품 수명평가를 위한 Steinberg 피로한계식 적용방안 연구 (A Study on the Application Method of Steinberg Fatigue Limit Equation for Electronic Part Life Assessment of Fighter Aircraft Radar)

  • 김덕주;하승룡;강민성;허재훈
    • 한국군사과학기술학회지
    • /
    • 제23권4호
    • /
    • pp.319-327
    • /
    • 2020
  • In this study a methodology to evaluate fatigue life of the electronic parts for the fighter radar unit under random vibration loading is presented. To do this, one parameter for the 3-σ RMS quation of Steinberg fatigue model is modified to come up with a printed circuit board(PCB) with multiple electronic parts, while fundamental frequency and dynamic deflection of the PCB are calculated from a MATLAB based finite element computer code. For the RIFA structure selected in this study, the 3-σ RMS fatigue limit displacement is reduced to 0.741 times as much as the Steinberg model. This investigation allows to assess the life of multiple electronic parts mounted on the PCB with reinforced metal cover/body showing non-sinusoidal deflection patterns.