Proceedings of the Korean Society of Broadcast Engineers Conference
/
fall
/
pp.45-48
/
2021
본 논문은 RGB 컬러 3 채널에 대해 공유되는 홀로그램 픽셀 피치를 사용하여 3 차원 장면의 라이트 필드 데이터에서 비호겔 기반 컴퓨터 생성 홀로그램(CGH)을 합성하는 방법을 제안한다. 비호겔 기반 CGH 기술은 라이트 필드의 광선 각도를 평면 파면의 공간 주파수로 해석하여 주어진 라이트 필드 데이터에서 임의의 반송파로 연속 파면을 생성한다. 그러나 광선 각도와 공간 주파수 관계는 파장에 따라 달라지므로 라이트 필드 데이터에서 공간 주파수 샘플링 그리드가 달라져서 홀로그램 재구성에서 색 수차가 발생한다. 제안하는 방법은 가장 작은 청색 회절각이 라이트 필드의 시야를 커버하도록 모든 색상 채널에 공통적인 홀로그램 픽셀 피치를 설정한다. 그런 다음 라이트 필드를 파란색 파장의 공간 주파수 범위와 빨간색 파장의 샘플링 간격으로 보간하여 모든 색상 채널에 공통적인 공간 주파수 샘플링 그리드를 설정한다. 공통 홀로그램 픽셀 피치 및 라이트 필드 공간 주파수 샘플링 그리드는 홀로그램 재구성에서 색상 수차 또는 라이트 필드에 포함된 정보 손실 없이 컬러 홀로그램 합성을 보장한다. 제안된 방법은 다양한 테스트와 리얼 3D 장면의 컬러 라이트 필드 데이터를 사용하여 검증되었다.
표면 라이트 필드는 각 시점에서 관찰된 서로 다른 물체 표면의 색 정보를 메쉬에 저장함으로써 물체 표면을 시점 변화에 따라 사실적으로 렌더링할 수 있다. 본 논문에서는 표면 라이트 필드에 대한 영상 기반 편집 기술로서 몰핑 기법을 제시한다. 표면 라이트 필드를 몰핑하기 위해서는 중간 물체의 표면 라이트 필드를 위한 기하 정보와 라이트 필드를 생성해야 한다. 중간 물체의 기하 정보는 메쉬 몰핑을 통해 얻을 수 있다. 중간 물체의 라이트 필드는 두 입력 라이트 필드에서 필요한 정보를 얻어 시점과 기하 정보의 변화에 따라 변형한 후 이를 보간하여 주어진 시점에서의 라이트 필드를 동적으로 얻어낸다. 메쉬 몰핑을 통해 얻어진 중간 물체의 메쉬는 입력 물체에 비해 매우 복잡한 연결 구조를 가지므로 렌터링 속도를 향상시키기 위한 방법을 제시한다. 먼저 메쉬 몰핑 과정에서 메타 메쉬를 만들 때 가까이에 있는 정점들을 병합하여 보다 단순한 메타 메쉬를 생성하고 중간 물체를 렌더링하기 위해 메타 메쉬를 사용하지 않고 메타 메쉬를 근사하도록 두 입력 메쉬를 변형한 후 이를 렌더링에 사용한다.
Currently commercially available light field cameras are difficult to acquire 5D light field video since it can only acquire the still images or high price of the device. In order to solve these problems, we propose a deep learning based method for synthesizing the light field video from monocular video. To solve the problem of obtaining the light field video training data, we use UnrealCV to acquire synthetic light field data by realistic rendering of 3D graphic scene and use it for training. The proposed deep running framework synthesizes the light field video with each sub-aperture image (SAI) of $9{\times}9$ from the input monocular video. The proposed network consists of a network for predicting the appearance flow from the input image converted to the luminance image, and a network for predicting the optical flow between the adjacent light field video frames obtained from the appearance flow.
본 고에서는 라이트필드 혹은 디지털 홀로그램에 기반한 근안 디스플레이 기술에 대하여 알아본다. 헤드 마운티드 디스플레이로 불리기도 하는 근안 디스플레이는 사용자가 착용하는 안경 형태의 디스플레이 기기를 말하며, 가상현실 및 증강현실 응용의 핵심 기기 중 하나이다. 본 고에서는 라이트필드 및 디지털 홀로그램 기술이 근안 디스플레이에 적용될 경우 갖는 장점들을 살펴보고 관련 연구 동향을 소개한다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2021.06a
/
pp.95-96
/
2021
본 논문에서는 단안비디오 입력으로부터 각 SAI(sub-aperture image)간의 넓은 기준선을 갖는 라이트필드 합성기법을 제안한다. 기존의 라이트필드 영상은 취득의 어려움에 의해 규모가 작고 특정 물체위주로 구성되어 있어 컴퓨터 비전 및 그래픽스 분야의 최신 딥러닝 기법들을 라이트필드 분야에 적용하기 어렵다는 문제를 갖고 있다. 이러한 문제점들을 해결하기 위해 사실적 렌더링 기반의 가상환경상에서 실제환경과 유사함을 갖는 데이터를 취득하였다. 생성한 데이터셋을 이용하여 기존의 새로운 시점을 생성하는 기법 중 하나인 다중 평면 영상(Multi Plane Image) 기반 합성기법을 통해 라이트필드 영상을 합성한다. 제안하는 네트워크는 단안비디오의 연속된 두개의 프레임으로부터 MPI 추정하는 네트워크와 입력영상의 깊이 정보를 추정하는 네트워크로 구성되어 있다.
초박형 라이트필드 카메라 시스템은 이미지 센서 위에 렌즈 어레이를 부착하는 방식으로 만들어진다. 이러한 초박형 라이트필드 카메라는 하나의 이미지 센서를 여러 개의 sub-aperture가 나눠쓰는 방식으로 되어있어 개별 이미지의 분해능이 낮으며, sub-aperture 이미지들을 융합해 추가적인 분해능 향상이 수행되어야 한다. 본 연구에서는 초박형 라이트필드 카메라 시스템을 개발했으며, 개발된 카메라 시스템을 위한 실시간 분해능 향상 알고리즘을 개발, 실험을 통해 검증했다. 개발된 초박형 라이트필드 카메라는 두께 2mm, 24개(6×4)의 551×551 해상도의 sub-aperture로 구성되어 있으며, 임베디드 컴퓨팅 보드를 사용해 휴대가 가능하도록 제작되었다. 실시간 분해능 향상 알고리즘은 임베디드 컴퓨팅 보드의 GPU에서 병렬처리를 통해 라플라시안 피라미드 기반의 이미지 융합 알고리즘을 수행한다. 실험을 통해 검증한 결과로, 개발 시스템은 MTF50값이 평균 35% 정도 개선되었으며, 10.65fps의 처리속도로 실시간 처리가 가능함을 확인했다.
카메라 센서의 한계로 인하여 촬영 장면에 따라 한 번의 촬영으로 모든 영역의 밝기가 적절하게 촬영되지 않는 경우가 존재한다. 이러한 센서의 한계는 하이 다이나믹 레인지 이미징 기술을 통해서 극복이 가능하다. 한 장면을 다양한 노출 설정으로 여러 번 촬영하는 브라케팅은 움직이는 피사체를 찍기에 적절하지 않으며 촬영 시간이 길다는 단점이 있다. 본 연구는 한 번의 촬영으로 서로 다른 노출의 이미지를 얻을 수 있는 소형 라이트필드 카메라를 제안한다. 라이트필드 카메라는 대표적으로 두 가지 형태가 있는데, 첫 번째는 여러 대의 카메라를 어레이로 배치한 라이트필드 카메라 시스템이며, 두 번째는 대물렌즈 뒤에 마이크로 렌즈 어레이를 배치한 카메라이다. 본 연구에서 제작된 초박형 라이트필드 카메라는 센서 위에 마이크로 렌즈어레이가 부착되어있는 형태의 카메라로 각 렌즈 조리개 크기를 다르게 설계하여 한 번의 촬영으로 다른 노출의 촬영 결과를 얻을 수 있게 설계되었다. 촬영된 단일 영상들을 전처리 하여 이미지 품질을 높인 이후, HDR 알고리즘을 통해 각 단일 이미지들보다 다이나믹 레인지가 넓은 이미지를 획득하도록 구현하였다. 또한 노출 시간을 기준으로 설계된 식을 수정하여 조리개값에 따라 다른 가중치를 둘 수 있도록 바꾸었고, 이를 통해 단 한 번의 촬영을 통한 HDR 이미징을 구현하였다.
Proceedings of the Korean Society of Broadcast Engineers Conference
/
2019.06a
/
pp.150-152
/
2019
본 논문에서는 기존의 연구를 극복하여 단일 영상이 아닌 단안 비디오로부터 5D 라이트필드 영상을 합성하는 딥러닝 프레임워크를 제안한다. 현재 일반적으로 사용 가능한 Lytro Illum 카메라 등은 초당 3프레임의 비디오만을 취득할 수 있기 때문에 학습용 데이터로 사용하기에 어려움이 있다. 이러한 문제점을 해결하기 위해 본 논문에서는 가상 환경 데이터를 구성하며 이를 위해 UnrealCV를 활용하여 사실적 그래픽 렌더링에 의한 데이터를 취득하고 이를 학습에 사용한다. 제안하는 딥러닝 프레임워크는 두 개의 입력 단안 비디오에서 $5{\times}5$의 각 SAI(sub-aperture image)를 갖는 라이트필드 비디오를 합성한다. 제안하는 네트워크는 luminance 영상으로 변환된 입력 영상으로부터 appearance flow를 추측하는 플로우 추측 네트워크(flow estimation network), appearance flow로부터 얻어진 두 개의 라이트필드 비디오 프레임 간의 optical flow를 추측하는 광학 플로우 추측 네트워크(optical flow estimation network)로 구성되어있다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2021.10a
/
pp.109-111
/
2021
Recently, computer vision research using light field cameras has been actively conducted. Since light field cameras have spatial information, various studies are being conducted in fields such as depth map estimation, super resolution, and 3D object detection. In this paper, we propose a method for detecting objects in blur images through a 7×7 array of images acquired through a light field camera. The blur image, which is weak in the existing camera, is detected through the light field camera. The proposed method uses the SSD algorithm to evaluate the performance using blur images acquired from light field cameras.
Lumentut, Jonathan Samuel;Baek, Hyungsun;Park, In Kyu
Journal of Broadcast Engineering
/
v.25
no.5
/
pp.672-684
/
2020
Restoring a low resolution and motion blurred light field has become essential due to the growing works on parallax-based image processing. These tasks are known as light-field enhancement process. Unfortunately, only a few state-of-the-art methods are introduced to solve the multiple problems jointly. In this work, we design a framework that jointly solves light field spatial super-resolution and motion deblurring tasks. Particularly, we generate a straight-forward neural network that is trained under low-resolution and 6-degree-of-freedom (6-DOF) motion-blurred light field dataset. Furthermore, we propose the strategy of local region optimization on the adversarial network to boost the performance. We evaluate our method through both quantitative and qualitative measurements and exhibit superior performance compared to the state-of-the-art methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.