• Title/Summary/Keyword: 라멘

Search Result 148, Processing Time 0.031 seconds

NEC5200/05에서 개발된 구조해석 및 설계자동화 프로그램

  • 정시현;김일곤
    • Computational Structural Engineering
    • /
    • v.3 no.1
    • /
    • pp.15-16
    • /
    • 1990
  • 한국건설기술연구원 구조연구실에서는 한국전력공사 토건연구실과 공동으로 N5200기종을 이용하여 철근콘크리트로 된 건축라멘구조의 해석 및 설계를 일관작업으로 시행할 수 있는 프로그램 KARST.1을 개발하였다. 본래 OA(Office Automation)용으로 개발된 N5200 기종은 현재 많은 분야에 보급, 사용되고 있는 IBM PC호환기종 보다 그 보급대수는 적지만 국내 여러기관에서 사용되고 있으며 계속적인 기계 성능의 향상과 다양한 Utility를 제공함으로써 적용분야를 증가시킬 수 있으리라 본다. 그러나 과학기술용으로 적용하기에는 아직 불편한 점이 많아 이 기종을 사용하여 구조물해석, 설계용으로 프로그램을 개발할 때 발생된 문제점과 KARST.1의 기능 및 특징을 간단히 소개하겠다.

  • PDF

Vibration Control of the Framed Building Structures Using KGDS System with Isotropic Damping Devices (등방성 감쇠장치를 갖는 KGDS시스템을 활용한 라멘조 건물의 제진효과)

  • Hur, Moo-Won;Lee, Sang-Hyun;Chun, Young-Soo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.2
    • /
    • pp.52-59
    • /
    • 2015
  • In this paper, the vibration control effect of the isotropic damping devices (so-called Kagome dampers) was investigated by applying the Kagome dampers to a 20-story frame structure apartment. A new Kagome Damper System (KGDS) composed of the dampers and supporting column was proposed and numerical analyses were performed to investigate the effects of stiffness ratio between controlled structure and supporting column, the damper size and the number of the dampers. The numerical analysis results of a structure with KGDS up to the third story showed that the stiffness ratio should be higher than 6.4 and the damper size be at least $700{\times}700mm$ to effectively reduce the base shear and the maximum drift of the uppermost story. When the KGDS was installed up to the fifth story, the stiffness ratio should be higher than 7.0 and damper size needs to be at least $500{\times}500mm$ for obtaining the target performance.

Case study on Construction and Improvement of Rahmen Structures in Deep Soft Clay Deposit (대심도 연약지반에 설치된 라멘 구조물의 시공 및 보강사례)

  • Lee, Sa-Ik;Choi, Young-Chul;Yoo, Sang-Ho;Kim, Tae-Hyung;Kim, Sung-Ryul
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Structures that have constructed in soft clay might suffer from many issues related to consolidation settlement or lateral movement of soft-clay during long-term period. Therefore, it is important to establish proper design and construction processes related to site investigation, soil improvement, construction management, and so on. This case study focused on the construction of the rahmen structure supported by pile foundations. Especially, the structure in this case had been constructed without improving underlying soft clay and before constructing backfill embankment due to the limited construction time and the traffic connection of the old road crossing new highway. Therefore, in order to satisfy the structural stability, the construction processes and countermeasure methods were carefully planned based on the results of preliminary numerical analyses and monitoring of ground behaviors. Through the trial and error precess during the construction, the structures had been successfully constructed.

The Structural Behavior of $700kg/cm^2$ High Strength Concrete Frames Considering Extension Distances at Joints (내민길이를 고려한 $700kg/cm^2$ 고강도 콘크리트 골조의 구조적거동)

  • 신성우;안종문;윤영수;이승훈
    • Magazine of the Korea Concrete Institute
    • /
    • v.6 no.5
    • /
    • pp.140-148
    • /
    • 1994
  • RCI 318-8!4 recommends that when the specified cornpresslve strength of concrete In a column is greater than 1.4 times thdt spec~f~ed for a floor svsttm. top surface of the colunm concrete shall extend 2ft(600mm) into the slab from the face of colurnn to avoid unexpected brittle failure. Six test specimens were cast arid tested on 2/3 scale frame specmiens havlng different extension distances and compressive strength of concrete as the major variables. The paper discusses the performance of the frames in terms of ductility and also presents the assessment of the ACI 318-89 provisions.The test results showed that the ductility index were incrrased with increasing of compressive strength of concrete and extension distance. And top surface of the column concrete should extend 2h(h overall depth of beam) into the beam from the face of the column to avoid unexpected brittle failure in frame.

A New Approach to the Analysis of Multi-span Continuous Beams (다경간(多徑間) 연속(連續)보의 해석(解析)에 관한 새로운 방법(方法))

  • Yang, Chang Hyun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.85-95
    • /
    • 1992
  • The moment distribution method has been widely used for the past sixty years for determining the end moments of structural frames. However, the method trends to show more complexity of the procedures and approximation of the results as the degree of indeterminancy increases. The previous study proposed closed form formulas for the analysis of the continuous beams up to four spans. These formulars show simpler forms and provide perfectly rigorous solution in comparision with the moment distribution method. This study proposes closed form formulas for the analysis of multi-span continuous beams which are basically similar to the equations developed in the previous study. It is shown that these formulars may also produce more rigorous results and lead to simpler calculation processes. The proposed approach may be one of the new methods for the analysis of multi-span continuous beams or the rigid frames.

  • PDF

Case Study of Explosive Demolition for a Structure in Urban Area (Explosive Demolition of Former Sung-Nam City Hall to Construct Sung-Nam City Hospital) (도심지 구조물 발파해체 적용사례 (성남시 의료원 건립을 위한 구성남시청사 발파해체))

  • Jung, Min-Su;Song, Young-Suk;Heo, Eui-Haeng;Kim, Hyo-Jin
    • Explosives and Blasting
    • /
    • v.30 no.1
    • /
    • pp.17-28
    • /
    • 2012
  • Building demolitions at urban area make some inconvenience to neighborhood through generating noises, ground vibrations, and dusts. For this reason, various methods to control such environmental impacts have been being designed and practiced. Among the methods, the use of explosive demolition is rapidly increasing because it can minimize the inconveniency as well as decrease the working time and cost. In this respect, the old Sung-Nam city hall, which was a Rahmen structure comprised of beams, slabs and columns, was decided to be demolished by explosive demolition. This paper shows that explosive demolition can be the most suitable way of removing old buildings eco-friendly, safely, and economically by showing the observation results obtained from the actual demolition operation for the Sung-Nam city hall.

Inelastic Seismic Response Control of the RC Framed Apartment Building Structures Using Exterior-Installed Kagome Damping System (외부접합형 카고메 감쇠시스템을 사용한 철근콘크리트 라멘조 공동주택 비탄성 지진 응답 제어)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.58-65
    • /
    • 2016
  • Various passive energy dissipation systems have been proposed and widely applied to real building structures under seismic load due to their high energy-dissipation potential and low cost for installation and maintenance. This paper presents nonlinear dynamic analysis results of the effectiveness of exterior-installed Kagome damping system(EKDS) in passively reducing seismic response. Kagome damping system proposed by previous studies has isotropic and bi-linear hysteretic characteristics and the installation configuration is newly presented in this study. The 15 and 20 story RC framed apartment buildings are used for verifying the effectiveness of the EKDS. The stiffness ratio of the damper supporting column to the original building, the number of the dampers, and the installed stories were considered as design parameters. Numerical results demonstrated that the EKDS were very effective in reducing both the two horizontal directional seismic responses by just using smaller number of exterior-installed damping system when compared to the traditional one-directional inter-story installed damping systems.

Sclerotium Rot of Cyclamen europaeum Caused by Sclerotium rolfsii (Sclerotium rolfsii에 의한 시클라멘 흰비단병)

  • Kwon, Jin-Hyeuk;Lee, Heung-Su;Kim, Jinwoo;Kim, Won-Il;Shim, Hong-Sik;Shen, Shun-Shan
    • Research in Plant Disease
    • /
    • v.20 no.3
    • /
    • pp.223-226
    • /
    • 2014
  • Sclerotium rot caused by Sclerotium rolfsii occurred on Cyclamen europaeum grown at the experimental greenhouse of Gyeongsangnam-do Agricultural Research and Extension Services in April 2013. Infected plants showed water-soaked appearance, wilting, and rotting; severely infected plants eventually died. White mycelial mats spread over lesions, and sclerotia were formed on leaves, petioles, and flower stalks near soil line. On the basis of mycological characteristics, ITS rDNA sequence analysis, and pathogenicity to host plants, this fungus was identified as S. rolfsii Saccardo. This is the first report of sclerotium rot on C. europaeum caused by S. rolfsii in Korea.

Mitigating Seismic Response of the RC Framed Apartment Building Structures Using Stair-Installation Kagome Damping System (계단 설치형 카고메 감쇠시스템을 활용한 철근콘크리트 라멘조 공동주택의 지진응답 개선)

  • Hur, Moo-Won;Chun, Young-Soo;Lee, Sang-Hyun;Hwang, Jae-Seung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.5
    • /
    • pp.23-30
    • /
    • 2018
  • Recently, there are highly interests on structural damping to improve resistance of seismic and wind. It has been frequently used hysteresis damping devices made of steel because of economic efficiency, construction, and maintenance. This paper presents the effective reduction of seismic response by using Kagome damping system(SKDS) in rahmen system apartment building. The proposed system is designed to be activated by the relative displacement between the building and the stairs. It is performed nonlinear dynamic analysis to review the effects of earthquake response reduction for the 20-stories rahmen framed apartment building. In the analysis of the SKDS system, the reduction of maximum response displacement, maximum response acceleration and layer shear force are compared with the seismic design, and the result show that allowable story displacement is satisfied with Korean Building Code (KBC 2016).

Seismic Performance of the Framed Apartment Building Structure with Damping System (감쇠시스템을 적용한 라멘조 아파트의 내진성능평가)

  • Chun, Young-Soo;Lee, Bum-Sik;Park, Ji-Young
    • Land and Housing Review
    • /
    • v.8 no.3
    • /
    • pp.181-187
    • /
    • 2017
  • To proactively respond to internal and external changes such as the recent demographic change and rising demand for diversified housing types, this study investigated the framed-structure free plan public house model proposed by the LH to look at the seismic performance of framed-structure apartment according to damper system use through non-linear analysis. The effectiveness thereof was also examined in terms of performance and economy. As a result, the proposed damper system application method to framed-structure free plan public house model was found to meet the performance requirements of the present earthquake-resistant design (KBC2016) and effective to apply to designs. The max response displacement and max response acceleration were compared based on the nonlinear analysis. As a result, the building with damper system showed better earthquake resistance performance than earthquake-resistant structure thanks to the damper system, although the base shear of earthquake-resistant system was reduced by 20% in design. The damper system is expected to help reduce building damage while ensuring excellent earthquake resistance performance. In addition, the framework quantities of earthquake-resistant structure and structure with damping system were compared. As a result, columns were found to reduce concrete amount by about 3.9% and rebar, by about 7.3%. Walls showed about 12.6% reduction in concrete and about 10.7% in rebar. In terms of cost, framework construction cost including formwork and foundation expenses was expected to drop by about 5~6%.