• Title/Summary/Keyword: 딸기 육묘

Search Result 51, Processing Time 0.035 seconds

Infection of Daughter Plants by Fusarium oxysporum f. sp. fragariae through Runner Propagation of Strawberry (딸기 영양번식을 통한 Fusarium oxysporum f. sp. fragariae의 자묘 감염)

  • Nam, Myeong-Hyeon;Kang, Yang-Jae;Lee, In-Ha;Kim, Hong-Gi;Chun, Chang-Hoo
    • Horticultural Science & Technology
    • /
    • v.29 no.3
    • /
    • pp.273-277
    • /
    • 2011
  • Fusarium oxysporum f. sp. fragariae (Fof), the causal agent of crown and root rot in strawberry, is the most serious soilborne disease of nursery plants in Korea. The possibility of infection by Fof through runner propagation from infected mother plants of strawberry cv. 'Kumhyang' was assessed in stolons and daughter plants hanging from raised beds. The number of daughter plants from an infected mother plant in plastic house and photosynthetic photon flux (PPF) system, 280 ${\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ was 2.7 and 3.8 plants after 58 days, respectively. However, healthy mother plants produced 6.5 and 8.4 daughter plants, respectively. The pathogen was detected in the uppermost portion of the stolon after 58 days, but was not detected further down the stolon. After 90 days, it was detected in all portions of the stolon between mother and $1^{st}$ daughter plant and in 60% of all $1^{st}$ daughter plants. The pathogen was not detected in the corresponding portions of the non-infected controls. These results show that infected mother plants can transmit Fof to their daughter plants without passing through the soil and $1^{st}$ daughter was used as mother plant in PPF system for propagating healthy plants.

Effect of Inoculation with Vesicular-Arbuscular Mycorrhizal (VAM) Fungi on the Early Growth of Strawberry Plantlets(Fragaria grandiflora Ehrn.) (딸기 묘(苗) 초기생육(初期生育)에 미치는 VA균근균(菌根菌)의 접종효과(接種效果))

  • Sohn, Bo-Kyoon;Huh, Sang-Man;Kim, Kil-Yong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.27 no.1
    • /
    • pp.54-63
    • /
    • 1994
  • Runner-derived(Expt.1) and tissue culture-derived strawbeery plantlets(Expt. 2) were grown in pots under greenhouse condition and inoculated with inocula of the vesicular-arbuscular mycorrhizal(VAM) fungi isolated from a field strawberry plants. Total biomass of mycorrhizal strawberry plants was significantly increased. There was a similar tendency in the number of cluster and flower at 20 weeks after inoculation, and VAM fungi inoculation positively influenced the leaf number, leaf length, leaf width and petiole length of strawberry plants in all investigated times. However, no difference was in the flowering time of strawberry plants. Leaf margin of non-inoculated strawberry plantlets turned into raddish brown(7.5R 4/8) from around 4 weeks after habituation. Inoculation of VAM fungi at the time of habituation was much more effective in stimulating plant growth. VA mycorrhizal dependency were 162.7 % in the runner-derived strawberry plants, Dependency with pre-and post-habituated incoulation in tissue culture-derived plants was respective 116.4% and 106.0%. The levels of mycorrhizal colonization were increased with plant growth and infection rates by endophytes at harvest time were 47.5% in Expt. 1, 56.4% in Expt. 2, respectively. Contents of phosphorus, potassium and calcium in mycorrhizal strawberry plants at harvest time were higher than non-mycorrhizal ones however, magnesium concentration was decreased. These experiments demonstrated that VAM fungi could be introduced into nursery stages of strawberry plantlets including the temporary planting period to improve growth and plant nutrients uptake by mycorrhizal plants.

  • PDF

Effect of Cold Treatment for Mother Plants of New Strawberry Cultivars Bred in Korea on the Production of Runners and Daughter Plants (국내 육성 신품종 딸기의 모주 저온처리가 런너와 자묘의 발생에 미치는 영향)

  • Jun, Ha Jun;Jun, Eui Hwan;Kang, Su In;Bae, Keun Hye
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.8-12
    • /
    • 2015
  • There are various limiting factors that take part in the production of daughter plants, but the important thing for mother plants of strawberries is to undergo a sufficient period of dormancy during winter. It is a well known fact that many runners and daughter plants are generated from mother plants that have been through sufficient cold treatment, but such researches were not found in Korea. This experiment was conducted due to the recent need for a research on the effects of cold treatment using 'Seolhyang,' 'Maehyang' and 'Ssanta' cultivars bred in Korea for two years in 2012 and 2013. The strawberries were divided into 4 types treatments: cold treatment plants in which 1,000 hours have passed in the temperature of $5^{\circ}C$ and below; cold+heated treatment plants in which 1,000 hours have passed in the temperature of $5^{\circ}C$ and below, and then 2 weeks in the greenhouse; greenhouse treatment plants raised in the greenhouse; and plants in harvest treatment. The results of the 2012 experiment showed that 'Seolhyang' had the bigger number of daughter plants in the cold, cold+heated, and harvest than greenhouse. 'Maehyang' had the biggest number of daughter plants in the cold+heated, and lowest in the greenhouse and harvest. 'Ssanta' had no significant difference in all treatments. The results of the 2013 experiment showed that 'Seolhyang' and 'Maehyang' both had more daughter plants in cold and cold+heated than in the greenhouse and harvest. 'Ssanta' tended to show a similar result and cold+heated had statistically more daughter plants than greenhouse.

Comparison of Environmental-Friendly and Chemical Spray Calendar for Controlling Diseases and Insect Pests of Strawberry during Nursery Seasons (딸기 육묘기 병해충 관리를 위한 친환경과 화학적 방제력 비교)

  • Nam, Myeong Hyeon;Kim, Hyun Sook;Kim, Tae Il;Lee, Eun Mo
    • Research in Plant Disease
    • /
    • v.21 no.4
    • /
    • pp.273-279
    • /
    • 2015
  • Major diseases and insect pests in nursery season of strawberry were anthracnose, powdery mildew, Fusarium wilt, two-spotted spider mite, and aphids. Environmental-friendly and chemical application schedules can improve diseases and insect pests control with relatively fewer organic and chemical materials inputs compared with spray programs when it's occurred. Field experiments were performed in 2012 to 2013 according to calendar-based spray programs with environmental-friendly spray calendar (EFSC) and conventional chemical spray calendar (CSC) for controlling diseases and insect pests of strawberry plants cv, Seolhyang during the two nursery seasons. EFSC did reduce the incidence of diseases and insect pests as compared to the non-treated control. Incidence of anthracnose and powdery mildew by EFSC and CSC was similar in 2012 and 2013 seasons. In addition, occurrence of two-spotted spider mite in EFSC in 2013 was similar to those of CSC and was shown highly in early and mid-June both 2012 and 2013 seasons. Occurrence of aphid in EFSC was shown highly in early and mid-June both 2012 and 2013 seasons. These results suggest that EFSC program may be effective for controlling strawberry diseases and insect pests by using environmental-friendly organic materials.

Influence of Root Restriction Materials and Media on Soil Environment and Growth of Runner Plantlets during Propagation of 'Seolhyang' Strawberry (차근육묘를 위한 자재 및 배지 종류가 토양환경과 '설향' 딸기 자묘의 생장에 미치는 영향)

  • Park, Gab Soon;Chae, Soo Cheon;Oh, Chan Sik;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.511-517
    • /
    • 2015
  • This research was conducted to evaluate the influence of root restriction materials and media on the growth of runner plantlets of 'Seolhyang' strawberry in a nursery field. To achieve this, the influence of three kinds of root media on the growth of runner plantlets was monitored when polyethylene film was used as the root restriction material. In addition, the influence of various root restriction materials (RRS) such as transparent polyethylene film (PE), non-woven fabric (NF), perforated polyethylene film (PP), and root proofing sheet (RPS) on the changes in volumetric water content (VWC) and temperature of root media as well as growth of runner plantlet were investigated when expanded rice hull (ERH) was used as the root medium. In the comparison of root media, growth parameters such as leaf area and crown thickness at 20 d after fixation as well as crown thickness and fresh weights of root and above-ground tissue at 40 d after runner plantlet fixation were higher in the ERH treatment than in sandy loam and loamy sand. When the influence of RRS was compared, the VWC of ERH was 55% just after irrigation, but decreased to 26% at just before irrigation. Ranges of the VWC as influenced by irrigation cycle were 16 to 10% in the PP and less than 10% in the NF and RPS. The soil temperature in the PE treatment was around $1^{\circ}C$ lower than in NF, PP, and RPS. The differences between day and night temperatures were also smaller in the PE treatment rather than those in NF, PP, and RPS. The growths of runner plantlet 50 d after fixation showed that plant heights as well as fresh weights of root and above-ground tissue were higher in the PE treatment than in NF, PP, and RPS. NF and PP did not effectively restrict roots inside the medium and the roots of runner plantlets penetrated through the root restriction materials resulting in the formation of root system below the restriction materials. The above results indicate that ERH is more effective than sandy loam or loamy sand as root medium. PE rather than NF, PP, or RPS as root restriction material resulted in better growth of runner plantlets in propagation of 'Seolhyang' strawberry. The results of this research will be used for production of high quality runner plantlets in strawberry propagation.

Changes in Moisture Contents of Rice-hull Based Root Media and Growth Responses of 'Seolhyang' Strawberry during Vegetative Propagation (육묘 과정 중 포트에 충진된 팽연왕겨 혼합상토의 함수량 변화와 '설향' 딸기의 생장 반응)

  • Park, Gab Soon;Kim, Yeoung Chil;Ann, Seoung Won;Kang, Hee Kyoung;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.1
    • /
    • pp.47-54
    • /
    • 2015
  • This research was conducted to investigate the changes in moisture retention capacities of expanded rice-hull (ERH)-based root media and their influences on the growth of mother and daughter plants in vegetative propagation of 'Seolhyang' strawberry. The proportion of water at the container capacity of ERH medium was in the range of 20 to 23%. This range was lower than the 60 to 66% of strawberry-specialized medium, the 30 to 34% of soil mother material (SMM) and the 30 to 35% of loamy sand. The moisture content of ERH was reduced to 10 to 12% at 8 hours after irrigation, and there were large variations among replications of ERH medium. Among four kinds of root media formulated to contain ERH, the medium of ERH + coir dust (CD) (55 + 45%, v/v) had 26.5 and 32.5% water contents at 20 and 40 days after irrigation to daughter plants, respectively. The m edia o f ERH + sandy loam (S L) and E RH + S MM showed similar trends i n moisture r etention. The pH and EC i n the all root media tested were in the range of 6.7 to 7.1 and 0.03 to $0.08dS{\cdot}m^{-1}$, respectively. The pHs and ECs measured at 20 and 40 days after irrigation were not significantly different in each root medium. Among the root media formulated to contain ERH, the growth of daughter plants was the highest in the treatment of ERH + SL (55 + 45%, v/v). As the blending rate of coir dust was elevated in the ERH + CD media, moisture retention capacity increased gradually, but the growth of daughter plants became worse even though the medium showed higher moisture retention capacity than other root media tested. The growth of roots and aboveground tissues of daughter plants deteriorated in the root media formulated by blending ERH + perlite (PE) at various ratios. The results of this research suggest the optimum formulations of root media and management of moisture content in raising of strawberry daughter plants when ERH is a component of root media.

The Effect of Gibberellin Dipping Concentration and Treatment Time on the Growth of Cutting Propagules in Strawberry (딸기 삽목 육묘 시 묘 생육에 미치는 지베렐린 침지농도 및 시간의 영향)

  • Eun Ji Kim;Chi Seon Kim;Hyun Soo Jung;Jun Gu Lee
    • Journal of Bio-Environment Control
    • /
    • v.33 no.1
    • /
    • pp.12-21
    • /
    • 2024
  • The aim of this research was to investigate the effect of gibberellin on improving seedling growth characteristics and enhancing strawberry quality in cutting propagation. Cuttings of the cultivar 'Seolhyang' were treated with GA3 for 30 and 60 minutes at concentrations of 50, 100, and 150 mg·L-1, with distilled water used for dipping as the control. Evaluation of seedling growth showed a positive correlation between the duration of gibberellin dipping and growth characteristics such as leaf number and SPAD value. Plant height, petiole length, leaf length and width, and leaf area varied significantly based on the interaction between dipping time and concentration. Crown diameter exhibited differences depending on the dipping time, with cuttings producing superior seedlings having a diameter of 8.0 mm or more for all treatments except the 30-minute, 100 mg·L-1 treatment. The T/R ratio was significantly lower in the 30-minute, 50 mg·L-1 treatment, indicating the highest plant vigor. Quantum yield was lower at a concentration of 150 mg·L-1, showing a decreasing trend with increasing gibberellin concentration. Nonphotochemical quenching was significantly smaller in the 30-minute, 150 mg·L-1 treatment, indicating an effective reduction of stress in the cuttings. Antioxidant content was highest in the 30-minute, 50 mg·L-1 treatment and the 60-minute, 150 mg·L-1 treatment. Moreover, the results of post-transplanting growth assessment showed no negative effect of gibberellin on flowering induction. Therefore, it was confirmed that gibberellin treatment during the cutting propagation of 'Seolhyang' strawberries had a positive effect on the production of high-quality seedlings. Dipping the cuttings in 50 mg·L-1 gibberellin for 30 minutes is considered to be the most suitable method for improving growth and quality compared to the control.

Medium Depths and Fixation Dates of 'Seolhyang' Strawberry Runner Plantlets in Nursery Field Influence the Seedling Quality and Early Growth after Transplanting (차근육묘를 위한 배지의 깊이 및 착근 시기가 '설향' 딸기 자묘 소질과 정식 후 초기 생장에 미치는 영향)

  • Park, Gab Soon;Choi, Jong Myung
    • Horticultural Science & Technology
    • /
    • v.33 no.4
    • /
    • pp.518-524
    • /
    • 2015
  • The objective of this research was to investigate the influence of various depths of expanded rice hull (ERH) medium and fixation dates of runner plantlets of 'Seolhyang' strawberry on the growths in nursery field and in plastic house soil after transplanting. The five treatments in medium depths (30, 50, 70, 90, and 110 mm) and four treatments in fixation dates (1st and 15th July and 1st and 15th August) were tested. The growths of runner plantlets were investigated before transplanting to plastic house soil. The early growth and inflorescence rates of crops after transplant to plastic house soil were also investigated. The plant height and fresh weight of runner plantlets were the highest in the medium depths of 50, 70, and 90 mm. The medium depth of 30 mm had higher numbers of first roots, but lower root fresh weight compared to those of 70, 90, and 110 mm. The treatment of 30 mm in medium depth showed poorer growth in all indexes except root length and root weight compared to those of 70, 90, and 110 mm. The runner plantlets fixed on July 1 and July 15 showed good root growth and the weights of ERH adhered to form root balls were 18.3 g and 13.9 g, respectively. The detached amount of ERH was less than 40% in the two treatments when root balls were shaken by a vibratory sieve shaker. The plant growth at 45 days after transplanting to plastic house soil were not significantly different when the runner plantlets were fixed in the period from July 1 to Aug. 1. The inflorescence rates of the first cluster were 93 to 100% when runner plantlets were fixed in the period from July 1 to Aug. 1. By contrast the runner plantlets fixed on the Aug. 15 had a 67% in florescence rate for the first cluster. These results indicate that optimum depth of ERH medium was 7 cm and the ranges of optimum fixation dates are from July 20 to 25.

Effects of Transplanting and Runner Releasing Times of Mother Plants for the Control of Daughter Plant Production Time in Cutting Strawberries (딸기 삽목 시 자묘 생산시기 조절을 위한 어미묘의 정식시기 및 런너 방임시기에 따른 효과)

  • Lim, Mi Young;Jeong, Ho Jeong;Choi, Gyeong Lee;Kim, So Hui;Choi, Su Hyun
    • Journal of Bio-Environment Control
    • /
    • v.29 no.4
    • /
    • pp.337-343
    • /
    • 2020
  • This study was carried out to evaluate the yield of cuttings according to the planting and runner releasing times of mother plants in order to raise the cutting seedlings of raising seedling period 75 days or more needed for forcing culture of strawberries to be transplanted into the field around the 15th of September. Three domestic cultivars of 'Maehyang', 'Jukhyang', and 'Kuemsil' were tested. For experiment 1 to determine the yield of cuttings with the change of transplanting time, the mother plant were planted on February 28, March 20, and April 9 in 20 days intervals, and the cuttings were collected two to three times from June 4 to July 1. Experiment 2 was conducted to investigate the yield of cuttings depending on the runner releasing time, the runners were released in three intervals of 20 days, 40 days, and 60 days after planting the mother plant on March 5, and the cutting were collected once to three times from May 29 to June 26. From the comparisons of cutting yield according to the transplanting time of mother plants, February 28 treatment was more 9~25% and 114~165% for each cultivar than March 20 and April 9, respectively (Experiment 1). The yield of cuttings with releasing time 20 days after planting the mother plants had higher by 60~77% and 104~176% for each cultivar than 40 days and 60 days, respectively (Experiment 2). From these results, in case of propagating the seedlings from cuttings needed for field planting around September 15, early planting around in the latter part of February is the best for cuttings yield. In addition, releasing after the removal of the runners produced from mother plants by 20 days after planting gives an advantage over higher yield of cuttings. Consequently, this study suggest to apply an efficient raising seedling system for labor saving and quality improvement in raising seedlings of three strawberry cultivars in Korea.