• Title/Summary/Keyword: 딥-러닝 모델

Search Result 2,118, Processing Time 0.032 seconds

Learning Symbolic Constraints Using Rectifier Networks for Neural Natural Language Processing (Rectifier Network 기반 학습된 심볼릭 제약을 반영한 뉴럴 자연언어처리)

  • Hong, Seung-Yean;Na, Seung-Hoon;Shin, Jong-Hoon;Kim, Young-Kil
    • Annual Conference on Human and Language Technology
    • /
    • 2020.10a
    • /
    • pp.254-256
    • /
    • 2020
  • 자연언어처리 문제에서 딥러닝 모델이 좋은 성능을 보이고 있고 딥러닝 결과는 구조화된 결과를 내놓는 경우가 많다. 딥러닝 모델 결과가 구조적인 형태를 가지는 경우 후처리 통해 특정 구조에 맞는 제약을 가해주는 경우가 일반적이다. 본 논문에서는 이러한 제약을 규칙에 기반하지 않고 직접 학습을 통해 얻고자 하였다.

  • PDF

Driver Drowsiness Detection Model using Image and PPG data Based on Multimodal Deep Learning (이미지와 PPG 데이터를 사용한 멀티모달 딥 러닝 기반의 운전자 졸음 감지 모델)

  • Choi, Hyung-Tak;Back, Moon-Ki;Kang, Jae-Sik;Yoon, Seung-Won;Lee, Kyu-Chul
    • Database Research
    • /
    • v.34 no.3
    • /
    • pp.45-57
    • /
    • 2018
  • The drowsiness that occurs in the driving is a very dangerous driver condition that can be directly linked to a major accident. In order to prevent drowsiness, there are traditional drowsiness detection methods to grasp the driver's condition, but there is a limit to the generalized driver's condition recognition that reflects the individual characteristics of drivers. In recent years, deep learning based state recognition studies have been proposed to recognize drivers' condition. Deep learning has the advantage of extracting features from a non-human machine and deriving a more generalized recognition model. In this study, we propose a more accurate state recognition model than the existing deep learning method by learning image and PPG at the same time to grasp driver's condition. This paper confirms the effect of driver's image and PPG data on drowsiness detection and experiment to see if it improves the performance of learning model when used together. We confirmed the accuracy improvement of around 3% when using image and PPG together than using image alone. In addition, the multimodal deep learning based model that classifies the driver's condition into three categories showed a classification accuracy of 96%.

Estimation of GNSS Zenith Tropospheric Wet Delay Using Deep Learning (딥러닝 기반 GNSS 천정방향 대류권 습윤지연 추정 연구)

  • Lim, Soo-Hyeon;Bae, Tae-Suk
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.1
    • /
    • pp.23-28
    • /
    • 2021
  • Data analysis research using deep learning has recently been studied in various field. In this paper, we conduct a GNSS (Global Navigation Satellite System)-based meteorological study applying deep learning by estimating the ZWD (Zenith tropospheric Wet Delay) through MLP (Multi-Layer Perceptron) and LSTM (Long Short-Term Memory) models. Deep learning models were trained with meteorological data and ZWD which is estimated using zenith tropospheric total delay and dry delay. We apply meteorological data not used for learning to the learned model to estimate ZWD with centimeter-level RMSE (Root Mean Square Error) in both models. It is necessary to analyze the GNSS data from coastal areas together and increase time resolution in order to estimate ZWD in various situations.

Synthesis of contrast CT image using deep learning network (딥러닝 네트워크를 이용한 조영증강 CT 영상 생성)

  • Woo, Sang-Keun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.01a
    • /
    • pp.465-467
    • /
    • 2019
  • 본 논문에서는 영상생성이 가능한 딥러닝 네트워크를 이용하여 조영증강 CT 영상을 획득하는 연구를 수행하였다. CT는 고해상도 영상을 바탕으로 환자의 질병 및 암 세포 진단에 사용되는 의료영상 기법 중 하나이다. 특히, 조영제를 투여한 다음 CT 영상을 획득되는 영상을 조영증강 CT 영상이라 한다. 조영증강된 CT 영상은 물질의 구성 성분의 영상대비를 강조하여 임상의로 하여금 진단 및 치료반응 평가의 정확성을 향상시켜준다. 하지많은 수의 환자들이 조영제 부작용을 갖기 때문에 이에 해당되는 환자의 경우 조영증강 CT 영상 획득이 불가능해진다. 따라서 본 연구에서는 조영증강 영상을 얻지 못하는 환자 및 일반 환자의 불필요한 방사선의 노출을 최소화 하기 위하여 영상생성 딥러닝 기법을 이용하여 CT 영상에서 조영증강 CT 영상을 생성하는 연구를 진행하였다. 영상생성 딥러닝 네트워크는 generative adversarial network (GAN) 모델을 사용하였다. 연구결과 아무런 전처리도 거치지 않은 CT 영상을 이용하여 영상을 생성하는 것 보다 히스토그램 균일화 과정을 거친 영상이 더 좋은 결과를 나타냈으며 생성영상이 기존의 실제 영상과 영상의 구조적 유사도가 높음을 확인할 수 있다. 본 연구결과 딥러닝 영상생성 모델을 이용하여 조영증강 CT 영상을 생성할 수 있었으며, 이를 통하여 환자의 불필요한 방사선 피폭을 최소하며, 생성된 조영증강 CT 영상을 바탕으로 정확한 진단 및 치료반응 평가에 기여할 수 있을거라 기대된다.

  • PDF

A Study on the Design of Glass Fiber Fabric Reinforced Plastic Circuit Analog Radar Absorber Structure Using Machine Learning and Deep Learning Techniques (머신러닝 및 딥러닝 기법을 활용한 유리섬유 직물 강화 복합재 적층판형 Circuit Analog 전파 흡수구조 설계에 대한 연구)

  • Jae Cheol Oh;Seok Young Park;Jin Bong Kim;Hong Kyu Jang;Ji Hoon Kim;Woo-Kyoung Lee
    • Composites Research
    • /
    • v.36 no.2
    • /
    • pp.92-100
    • /
    • 2023
  • In this paper, a machine learning and deep learning model for the design of circuit analog (CA) radar absorbing structure with a cross-dipole pattern on a glass fiber fabric reinforced plastic is presented. The proposed model can directly calculate reflection loss in the Ku-band (12-18 GHz) without three-dimensional electromagnetic numerical analysis based on the geometry of the Cross-Dipole pattern. For this purpose, the optimal learning model was derived by applying various machine learning and deep learning techniques, and the results calculated by the learning model were compared with the electromagnetic wave absorption characteristics obtained by 3D electromagnetic wave numerical analysis to evaluate the comparative advantages of each model. Most of the implemented models showed similar calculated results to the numerical results, but it was found that the Fully-Connected model could provide the most similar calculated results.

Evaluation of Classification Performance of Inception V3 Algorithm for Chest X-ray Images of Patients with Cardiomegaly (심장비대증 환자의 흉부 X선 영상에 대한 Inception V3 알고리즘의 분류 성능평가)

  • Jeong, Woo-Yeon;Kim, Jung-Hun;Park, Ji-Eun;Kim, Min-Jeong;Lee, Jong-Min
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.4
    • /
    • pp.455-461
    • /
    • 2021
  • Cardiomegaly is one of the most common diseases seen on chest X-rays, but if it is not detected early, it can cause serious complications. In view of this, in recent years, many researches on image analysis in which deep learning algorithms using artificial intelligence are applied to medical care have been conducted with the development of various science and technology fields. In this paper, we would like to evaluate whether the Inception V3 deep learning model is a useful model for the classification of Cardiomegaly using chest X-ray images. For the images used, a total of 1026 chest X-ray images of patients diagnosed with normal heart and those diagnosed with Cardiomegaly in Kyungpook National University Hospital were used. As a result of the experiment, the classification accuracy and loss of the Inception V3 deep learning model according to the presence or absence of Cardiomegaly were 96.0% and 0.22%, respectively. From the research results, it was found that the Inception V3 deep learning model is an excellent deep learning model for feature extraction and classification of chest image data. The Inception V3 deep learning model is considered to be a useful deep learning model for classification of chest diseases, and if such excellent research results are obtained by conducting research using a little more variety of medical image data, I think it will be great help for doctor's diagnosis in future.

Commercial location recommend system using deep learning data analysis (딥러닝 데이터 분석을 통한 최적의 상권 입지 추천 기술 개발)

  • Park, Hyeong-Bin;Kim, So-Hee;Nam, Ji-Su;Cho, Yoon-Bin;Jun, Hee-Gook;Im, Dong-Hyuk
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2022.05a
    • /
    • pp.602-605
    • /
    • 2022
  • 본 연구는 대량의 상권 데이터를 바탕으로 머신 러닝과 딥러닝 분석을 이용하여 최적의 상권 입지를 추천하는 시스템 개발을 목표로 한다. 자영업자들의 오프라인 창업에 있어 개개인의 매장 정보에 기반한 입지 조건 판단은 앞으로의 매출에 중요한 시작점이다. 따라서 상권 정보를 기반으로 미래 매출을 예측하여 최적의 상권 입지를 추천하는 기술이 필요하다. 이를 위해 기존에 선행된 다수의 회귀 기법과 더불어 강하게 편향된 데이터를 레이블링 하여 다중 분류 기법으로도 문제를 접근한다. 최종적으로 딥러닝 모델과 합성하여 더 높은 성능을 이끌어내고 이로부터 편향 데이터 처리 방법과 딥러닝 모델과의 앙상블 중요성에 대해 논의하고자 한다.

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning (딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거)

  • Sun, Young-Ghyu;Hwang, Yu-Min;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

Analysis of Security Problems of Deep Learning Technology (딥러닝 기술이 가지는 보안 문제점에 대한 분석)

  • Choi, Hee-Sik;Cho, Yang-Hyun
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.5
    • /
    • pp.9-16
    • /
    • 2019
  • In this paper, it will analyze security problems, so technology's potential can apply to business security area. First, in order to deep learning do security tasks sufficiently in the business area, deep learning requires repetitive learning with large amounts of data. In this paper, to acquire learning ability to do stable business tasks, it must detect abnormal IP packets and attack such as normal software with malicious code. Therefore, this paper will analyze whether deep learning has the cognitive ability to detect various attack. In this paper, to deep learning to reach the system and reliably execute the business model which has problem, this paper will develop deep learning technology which is equipped with security engine to analyze new IP about Session and do log analysis and solve the problem of mathematical role which can extract abnormal data and distinguish infringement of system data. Then it will apply to business model to drop the vulnerability and improve the business performance.

Implementation of the Stone Classification with AI Algorithm Based on VGGNet Neural Networks (VGGNet을 활용한 석재분류 인공지능 알고리즘 구현)

  • Choi, Kyung Nam
    • Smart Media Journal
    • /
    • v.10 no.1
    • /
    • pp.32-38
    • /
    • 2021
  • Image classification through deep learning on the image from photographs has been a very active research field for the past several years. In this paper, we propose a method of automatically discriminating stone images from domestic source through deep learning, which is to use Python's hash library to scan 300×300 pixel photo images of granites such as Hwangdeungseok, Goheungseok, and Pocheonseok, performing data preprocessing to create learning images by examining duplicate images for each stone, removing duplicate images with the same hash value as a result of the inspection, and deep learning by stone. In addition, to utilize VGGNet, the size of the images for each stone is resized to 224×224 pixels, learned in VGG16 where the ratio of training and verification data for learning is 80% versus 20%. After training of deep learning, the loss function graph and the accuracy graph were generated, and the prediction results of the deep learning model were output for the three kinds of stone images.