• Title/Summary/Keyword: 딥러닝 융합연구

Search Result 439, Processing Time 0.029 seconds

Fruit price prediction study using artificial intelligence (인공지능을 이용한 과일 가격 예측 모델 연구)

  • Im, Jin-mo;Kim, Weol-Youg;Byoun, Woo-Jin;Shin, Seung-Jung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.4 no.2
    • /
    • pp.197-204
    • /
    • 2018
  • One of the hottest issues in our 21st century is AI. Just as the automation of manual labor has been achieved through the Industrial Revolution in the agricultural society, the intelligence information society has come through the SW Revolution in the information society. With the advent of Google 'Alpha Go', the computer has learned and predicted its own machine learning, and now the time has come for the computer to surpass the human, even to the world of Baduk, in other words, the computer. Machine learning ML (machine learning) is a field of artificial intelligence. Machine learning ML (machine learning) is a field of artificial intelligence, which means that AI technology is developed to allow the computer to learn by itself. The time has come when computers are beyond human beings. Many companies use machine learning, for example, to keep learning images on Facebook, and then telling them who they are. We also used a neural network to build an efficient energy usage model for Google's data center optimization. As another example, Microsoft's real-time interpretation model is a more sophisticated translation model as the language-related input data increases through translation learning. As machine learning has been increasingly used in many fields, we have to jump into the AI industry to move forward in our 21st century society.

Research on Subword Tokenization of Korean Neural Machine Translation and Proposal for Tokenization Method to Separate Jongsung from Syllables (한국어 인공신경망 기계번역의 서브 워드 분절 연구 및 음절 기반 종성 분리 토큰화 제안)

  • Eo, Sugyeong;Park, Chanjun;Moon, Hyeonseok;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.3
    • /
    • pp.1-7
    • /
    • 2021
  • Since Neural Machine Translation (NMT) uses only a limited number of words, there is a possibility that words that are not registered in the dictionary will be entered as input. The proposed method to alleviate this Out of Vocabulary (OOV) problem is Subword Tokenization, which is a methodology for constructing words by dividing sentences into subword units smaller than words. In this paper, we deal with general subword tokenization algorithms. Furthermore, in order to create a vocabulary that can handle the infinite conjugation of Korean adjectives and verbs, we propose a new methodology for subword tokenization training by separating the Jongsung(coda) from Korean syllables (consisting of Chosung-onset, Jungsung-neucleus and Jongsung-coda). As a result of the experiment, the methodology proposed in this paper outperforms the existing subword tokenization methodology.

A Study on Automatic Classification of Class Diagram Images (클래스 다이어그램 이미지의 자동 분류에 관한 연구)

  • Kim, Dong Kwan
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.1-9
    • /
    • 2022
  • UML class diagrams are used to visualize the static aspects of a software system and are involved from analysis and design to documentation and testing. Software modeling using class diagrams is essential for software development, but it may be not an easy activity for inexperienced modelers. The modeling productivity could be improved with a dataset of class diagrams which are classified by domain categories. To this end, this paper provides a classification method for a dataset of class diagram images. First, real class diagrams are selected from collected images. Then, class names are extracted from the real class diagram images and the class diagram images are classified according to domain categories. The proposed classification model has achieved 100.00%, 95.59%, 97.74%, and 97.77% in precision, recall, F1-score, and accuracy, respectively. The accuracy scores for the domain categorization are distributed between 81.1% and 95.2%. Although the number of class diagram images in the experiment is not large enough, the experimental results indicate that it is worth considering the proposed approach to class diagram image classification.

An Implementation of Stock Investment Service based on Reinforcement Learning (강화학습 기반 주식 투자 웹 서비스)

  • Park, Jeongyeon;Hong, Seungsik;Park, Mingyu;Lee, Hyun
    • The Journal of the Convergence on Culture Technology
    • /
    • v.7 no.4
    • /
    • pp.807-814
    • /
    • 2021
  • As economic activities decrease, and the stock market decline due to COVID-19, many people are jumping into stock investment as an alternative source of income. As people's interest increases, many stock price analysis studies are underway to earn more profits. Due to the variance observed in the stock markets, it is necessary to analyze each stock independently and consistently. To solve this problem, we designed and implemented models and services that analyze stock prices using a reinforcement learning technique called Asynchronous Advantage Actor-Critic(A3C). Stock market data reflected external factors such as government bonds and KOSPI (Korea Composite Stock Price Index) as well as stock prices. Our proposed work provides a web service with a visual representation of predictions of stocks and stock information through which directions are given to investors to make safe investments without analyzing domestic and foreign stock market trends.

Error Analysis of Recent Conversational Agent-based Commercialization Education Platform (최신 대화형 에이전트 기반 상용화 교육 플랫폼 오류 분석)

  • Lee, Seungjun;Park, Chanjun;Seo, Jaehyung;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.13 no.3
    • /
    • pp.11-22
    • /
    • 2022
  • Recently, research and development using various Artificial Intelligence (AI) technologies are being conducted in the field of education. Among the AI in Education (AIEd), conversational agents are not limited by time and space, and can learn more effectively by combining them with various AI technologies such as voice recognition and translation. This paper conducted a trend analysis on platforms that have a large number of users and used conversational agents for English learning among commercialized application. Currently commercialized educational platforms using conversational agent through trend analysis has several limitations and problems. To analyze specific problems and limitations, a comparative experiment was conducted with the latest pre-trained large-capacity dialogue model. Sensibleness and Specificity Average (SSA) human evaluation was conducted to evaluate conversational human-likeness. Based on the experiment, this paper propose the need for trained with large-capacity parameters dialogue models, educational data, and information retrieval functions for effective English conversation learning.

A Design of AI Cloud Platform for Safety Management on High-risk Environment (고위험 현장의 안전관리를 위한 AI 클라우드 플랫폼 설계)

  • Ki-Bong, Kim
    • Journal of Advanced Technology Convergence
    • /
    • v.1 no.2
    • /
    • pp.01-09
    • /
    • 2022
  • Recently, safety issues in companies and public institutions are no longer a task that can be postponed, and when a major safety accident occurs, not only direct financial loss, but also indirect loss of social trust in the company and public institution is greatly increased. In particular, in the case of a fatal accident, the damage is even more serious. Accordingly, as companies and public institutions expand their investments in industrial safety education and prevention, open AI learning model creation technology that enables safety management services without being affected by user behavior in industrial sites where high-risk situations exist, edge terminals System development using inter-AI collaboration technology, cloud-edge terminal linkage technology, multi-modal risk situation determination technology, and AI model learning support technology is underway. In particular, with the development and spread of artificial intelligence technology, research to apply the technology to safety issues is becoming active. Therefore, in this paper, an open cloud platform design method that can support AI model learning for high-risk site safety management is presented.

Prediction of Sea Water Temperature by Using Deep Learning Technology Based on Ocean Buoy (해양관측부위 자료 기반 딥러닝 기술을 활용한 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Byeon, Seong-Hyeon;Kim, Young-Won
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.3
    • /
    • pp.299-309
    • /
    • 2022
  • Recently, The sea water temperature around Korean Peninsula is steadily increasing. Water temperature changes not only affect the fishing ecosystem, but also are closely related to military operations in the sea. The purpose of this study is to suggest which model is more suitable for the field of water temperature prediction by attempting short-term water temperature prediction through various prediction models based on deep learning technology. The data used for prediction are water temperature data from the East Sea (Goseong, Yangyang, Gangneung, and Yeongdeok) from 2016 to 2020, which were observed through marine observation by the National Fisheries Research Institute. In addition, we use Long Short-Term Memory (LSTM), Bidirectional LSTM, and Gated Recurrent Unit (GRU) techniques that show excellent performance in predicting time series data as models for prediction. While the previous study used only LSTM, in this study, the prediction accuracy of each technique and the performance time were compared by applying various techniques in addition to LSTM. As a result of the study, it was confirmed that Bidirectional LSTM and GRU techniques had the least error between actual and predicted values at all observation points based on 1 hour prediction, and GRU was the fastest in learning time. Through this, it was confirmed that a method using Bidirectional LSTM was required for water temperature prediction to improve accuracy while reducing prediction errors. In areas that require real-time prediction in addition to accuracy, such as anti-submarine operations, it is judged that the method of using the GRU technique will be more appropriate.

The study of blood glucose level prediction model using ballistocardiogram and artificial intelligence (심탄도와 인공지능을 이용한 혈당수치 예측모델 연구)

  • Choi, Sang-Ki;Park, Cheol-Gu
    • Journal of Digital Convergence
    • /
    • v.19 no.9
    • /
    • pp.257-269
    • /
    • 2021
  • The purpose of this study is to collect biosignal data in a non-invasive and non-restrictive manner using a BCG (Ballistocardiogram) sensor, and utilize artificial intelligence machine learning algorithms in ICT and high-performance computing environments. And it is to present and study a method for developing and validating a data-based blood glucose prediction model. In the blood glucose level prediction model, the input nodes in the MLP architecture are data of heart rate, respiration rate, stroke volume, heart rate variability, SDNN, RMSSD, PNN50, age, and gender, and the hidden layer 7 were used. As a result of the experiment, the average MSE, MAE, and RMSE values of the learning data tested 5 times were 0.5226, 0.6328, and 0.7692, respectively, and the average values of the validation data were 0.5408, 0.6776, and 0.7968, respectively, and the coefficient of determination (R2) was 0.9997. If research to standardize a model for predicting blood sugar levels based on data and to verify data set collection and prediction accuracy continues, it is expected that it can be used for non-invasive blood sugar level management.

Filter-mBART Based Neural Machine Translation Using Parallel Corpus Filtering (병렬 말뭉치 필터링을 적용한 Filter-mBART기반 기계번역 연구)

  • Moon, Hyeonseok;Park, Chanjun;Eo, Sugyeong;Park, JeongBae;Lim, Heuiseok
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.5
    • /
    • pp.1-7
    • /
    • 2021
  • In the latest trend of machine translation research, the model is pretrained through a large mono lingual corpus and then finetuned with a parallel corpus. Although many studies tend to increase the amount of data used in the pretraining stage, it is hard to say that the amount of data must be increased to improve machine translation performance. In this study, through an experiment based on the mBART model using parallel corpus filtering, we propose that high quality data can yield better machine translation performance, even utilizing smaller amount of data. We propose that it is important to consider the quality of data rather than the amount of data, and it can be used as a guideline for building a training corpus.

A study on stock price prediction through analysis of sales growth performance and macro-indicators using artificial intelligence (인공지능을 이용하여 매출성장성과 거시지표 분석을 통한 주가 예측 연구)

  • Hong, Sunghyuck
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.28-33
    • /
    • 2021
  • Since the stock price is a measure of the future value of the company, when analyzing the stock price, the company's growth potential, such as sales and profits, is considered and invested in stocks. In order to set the criteria for selecting stocks, institutional investors look at current industry trends and macroeconomic indicators, first select relevant fields that can grow, then select related companies, analyze them, set a target price, then buy, and sell when the target price is reached. Stock trading is carried out in the same way. However, general individual investors do not have any knowledge of investment, and invest in items recommended by experts or acquaintances without analysis of financial statements or growth potential of the company, which is lower in terms of return than institutional investors and foreign investors. Therefore, in this study, we propose a research method to select undervalued stocks by analyzing ROE, an indicator that considers the growth potential of a company, such as sales and profits, and predict the stock price flow of the selected stock through deep learning algorithms. This study is conducted to help with investment.