• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.027 seconds

Noise Robust System for Pig Wasting Diseases Detection (잡음에 강인한 돼지 호흡기 질병 탐지 시스템)

  • Choi, Yongju;Choi, Yoona;Park, Daihee;Chung, Yongwha
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.720-723
    • /
    • 2017
  • 돼지 호흡기 질병은 돈사에 막대한 경제적 손실을 초래하는 질병들 중 하나이다. 본 논문에서는 저비용으로도 구축이 가능한 소리 센서 기반의 돼지 호흡기 질병 탐지 시스템을 제안하며, 특히 잡음 환경에서도 강인한 시스템의 구성에 초점을 두었다. 제안하는 시스템은 먼저, 돈사 내의 소리 센서로부터 취득한 돼지 소리를 2차원 회색조 이미지로 변환한다. 이후, 잡음에 강인한 성능을 보이는 Dominant Neighborhood Structure(DNS) 알고리즘을 이용하여 질감정보를 추출한다. 마지막으로, 이미지 분류에서 그 성능이 이미 입증된 딥러닝의 대표적 모델인 Convolutional Neural Network(CNN)에 사용하여 돼지 호흡기 질병을 탐지 및 분류한다. 실제 국내 돈사에서 취득한 돼지 소리를 이용하여 제안하는 시스템의 성능을 실험적으로 검증한 바 96%가 넘는 안정적인 시스템임을 확인하였다.

Deep Learning and IoT Standards based High Rise Fieldworker's Behavior Analysis System (딥러닝과 IoT 표준을 이용한 고소 작업자 행동분석 시스템)

  • Lee, Se-hoon;Kang, Gun-ha;Sim, Gun-wu;Tak, Jin-hyun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2019.07a
    • /
    • pp.247-248
    • /
    • 2019
  • 본 논문에서는 블루투스 비콘을 이용해 고소 작업장 등의 위험지역에서 작업자 추적 및 확인과 안전 벨트고리를 체결했는지 여부와 작업자의 행동에 따른 데이터를 추가로 수집하여 작업자의 행동 패턴을 분석하였다. IoT 국제 표준인 oneM2M을 기반으로 IoT Device와 Application을 연결하는 중간 매개체로 모비우스 플랫폼을 사용해 시스템을 구축하였다. 또한, 본 연구팀의 선행 연구에서 작업자 위험 행동분류 시스템을 개선할 수 있는 연구 결과를 비교하였다.

  • PDF

Multi-Modal Recommendation System for Web Novels (멀티 모달 딥러닝을 활용한 웹소설 추천 시스템)

  • Mi Ryeo Kim;Hyon Hee Kim
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.552-554
    • /
    • 2023
  • 웹소설 시장의 성장에 따라 웹소설 추천 시스템의 중요성이 높아지고 있다. 본 연구에서는 작품의 특성 및 선호도를 나타낼 수 있는 다양한 데이터를 활용하여 추천시스템을 구현하고 그 성능을 평가하여 표지 이미지와 작품 특성을 모두 고려한 멀티 모달 추천 시스템이 가장 효율적임을 보여주었다. 연구 결과, 단일 변수 추천에서는 작품 소개글과 표지 이미지 기반 추천이 가장 좋은 성능을 보였고, 멀티 모달 추천 시스템에서는 작품 소개글, 이미지, 키워드 순으로 성능에 좋은 영향을 끼치는 것으로 나타났다. 이번 연구 결과는 한국콘텐츠진흥원에서 조사한 웹소설 이용자 실태조사와는 조금 다른 결과를 보여주었다. 설문조사에서는 인기도를 웹소설 선택 시 가장 중요한 영향으로 봤으나, 본 연구에서는 작품 소개글이 가장 중요한 영향을 미친다는 결과가 나타났다. 이러한 연구 결과는 웹소설 추천 시스템의 개발과 운영에 있어서 중요한 참고 자료가 될 것으로 예상된다.

Deep learning-based product image classification system and its usability evaluation for the O2O shopping mall platform (딥 러닝 기반 쇼핑몰 플랫폼용 상품 이미지 자동 분류 시스템 및 사용성 평가)

  • Sung, Jae-Kyung;Park, Sang-Min;Sin, Sang-Yun;Kim, Yung-Bok;Kim, Yong-Guk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.17 no.3
    • /
    • pp.227-234
    • /
    • 2017
  • In this paper, we propose a system whereby one can automatically classifies categories based on image data of the products for a shopping mall platform. Many products sold within internet shopping malls are classified their category defined by the same use of product names and products. However, it is difficult to search by category classification when the classification of the product is uncertain and the product classified by the shopping mall seller judgment is different from the purchasing user judgment. We proposes classification and retrieval method by Deep Learning technique solely using product image. The system can categorize products by using their images and its speed and accuracy are quantified using test data. The performance is evaluated with the test data. In addition, its usability is tested with the participants.

Sinkhole Tracking by Deep Learning and Data Association (딥 러닝과 데이터 결합에 의한 싱크홀 트래킹)

  • Ro, Soonghwan;Hoai, Nam Vu;Choi, Bokgil;Dung, Nguyen Manh
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.6
    • /
    • pp.17-25
    • /
    • 2019
  • Accurate tracking of the sinkholes that are appearing frequently now is an important method of protecting human and property damage. Although many sinkhole detection systems have been proposed, it is still far from completely solved especially in-depth area. Furthermore, detection of sinkhole algorithms experienced the problem of unstable result that makes the system difficult to fire a warning in real-time. In this paper, we proposed a method of sinkhole tracking by deep learning and data association, that takes advantage of the recent development of CNN transfer learning. Our system consists of three main parts which are binary segmentation, sinkhole classification, and sinkhole tracking. The experiment results show that the sinkhole can be tracked in real-time on the dataset. These achievements have proven that the proposed system is able to apply to the practical application.

Question Answering System that Combines Deep Learning and Information Retrieval (딥러닝과 정보검색을 결합한 질의응답 시스템)

  • Lee, Hyeon-gu;Kim, Harksoo
    • 한국어정보학회:학술대회논문집
    • /
    • 2016.10a
    • /
    • pp.134-138
    • /
    • 2016
  • 정보의 양이 빠르게 증가함으로 인해 필요한 정보만을 효율적으로 얻기 위한 질의응답 시스템의 중요도가 늘어나고 있다. 그 중에서도 질의 문장에서 주어와 관계를 추출하여 정답을 찾는 지식베이스 기반 질의응답 시스템이 활발히 연구되고 있다. 그러나 기존 지식베이스 기반 질의응답 시스템은 하나의 질의 문장만을 사용하므로 정보가 부족한 단점이 있다. 본 논문에서는 이러한 단점을 해결하고자 정보검색을 통해 질의와 유사한 문장을 찾고 Recurrent Neural Encoder-Decoder에 검색된 문장과 질의를 함께 활용하여 주어와 관계를 찾는 모델을 제안한다. bAbI SimpleQuestions v2 데이터를 이용한 실험에서 제안 모델은 질의만 사용하여 주어와 관계를 찾는 모델보다 좋은 성능(정확도 주어:33.2%, 관계:56.4%)을 보였다.

  • PDF

Chatting System that Pseudomorpheme-based Korean (의사 형태소 단위 채팅 시스템)

  • Kim, Sihyung;Kim, HarkSoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.263-267
    • /
    • 2016
  • 채팅 시스템은 사람이 사용하는 언어로 컴퓨터와 의사소통을 하는 시스템이다. 최근 딥 러닝이 큰 화두가 되면서 다양한 채팅 시스템에 관한 연구가 빠르게 진행 되고 있다. 본 논문에서는 문장을 Recurrent Neural Network기반 의사형태소 분석기로 분리하고 Attention mechanism Encoder-Decoder Model의 입력으로 사용하는 채팅 시스템을 제안한다. 채팅 데이터를 통한 실험에서 사용자 문장이 짧은 경우는 답변이 잘 나오는 것을 확인하였으나 긴 문장에 대해서는 문법에 맞지 않는 문장이 생성되는 것을 알 수 있었다.

  • PDF

Question Answering System that Combines Deep Learning and Information Retrieval (딥러닝과 정보검색을 결합한 질의응답 시스템)

  • Lee, Hyeon-gu;Kim, Harksoo
    • Annual Conference on Human and Language Technology
    • /
    • 2016.10a
    • /
    • pp.134-138
    • /
    • 2016
  • 정보의 양이 빠르게 증가함으로 인해 필요한 정보만을 효율적으로 얻기 위한 질의응답 시스템의 중요도가 늘어나고 있다. 그 중에서도 질의 문장에서 주어와 관계를 추출하여 정답을 찾는 지식베이스 기반 질의응답 시스템이 활발히 연구되고 있다. 그러나 기존 지식베이스 기반 질의응답 시스템은 하나의 질의 문장만을 사용하므로 정보가 부족한 단점이 있다. 본 논문에서는 이러한 단점을 해결하고자 정보검색을 통해 질의와 유사한 문장을 찾고 Recurrent Neural Encoder-Decoder에 검색된 문장과 질의를 함께 활용하여 주어와 관계를 찾는 모델을 제안한다. bAbI SimpleQuestions v2 데이터를 이용한 실험에서 제안 모델은 질의만 사용하여 주어와 관계를 찾는 모델보다 좋은 성능(정확도 주어:33.2%, 관계:56.4%)을 보였다.

  • PDF

Radix-2 Booth-based Variable Precision Multiplier for Lightweight CNN Accelerators (경량 CNN 가속기를 위한 Radix-2 Booth 기반 가변 정밀도 곱셈기)

  • Guem, Duck-Hyun;Jeon, Seung-Jin;Choi, Jae-Young;Kim, Ji-Hyeok;Kim, Sunhee
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.494-496
    • /
    • 2022
  • 엣지 디바이스에서 딥러닝을 활용하기 위하여 CNN 경량화 연구들이 진행되고 있다. 경량 CNN 은 대부분 고정 소수점을 사용하며, 계층에 따라 정밀도는 달라진다. 본 논문에서는 경량 CNN 을 지원하기 위하여, 사용 계층에 따라 정밀도를 선택할 수 있는 가변 정밀도 곱셈기를 제안한다. 제안하는 가변 정밀도 곱셈기는 낮은 정밀도 곱셈기를 병합하는 구조로, 정밀도가 낮을 때는 병렬 처리를 통해 효율을 높인다. 제안하는 곱셈기를 Verilog HDL로 설계하고 ModelSim 에서 동작을 확인하였다. 설계된 곱셈기는 계층별로 정밀도가 다른 CNN 가속기에서 효율적으로 적용될 것으로 기대된다.

Implementation of Physical Computing Module of AI Block Python Coding Platform (인공지능 블록 파이썬 코딩 플랫폼의 피지컬 컴퓨팅 모듈 구현)

  • Lee, Se-hoon;Nam, Ji-won;Kim, Gwan-pil;Jeon, Woo-jin;Kim, Ki-Tae
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2021.07a
    • /
    • pp.453-454
    • /
    • 2021
  • 본 논문에서는 딥아이(DIY) 블록 프로그래밍과 라즈베리파이의 피지컬 컴퓨팅을 활용해 엑츄에이터와 센서를 제어하고 센서를 통해 수집한 데이터를 전처리해 인공지능에 활용함으로써 효율적인 인공지능 교육 방식을 제안한다. 해당 방식은 블록코딩 방식을 사용함으로써 문자코딩 대비 오타을 줄이고 문법 구애율을 낮춤으로써 프로그래밍 입문자의 구문적 어려움을 최소화하고 개념과 전략적 학습을 극대화한다. 블록프로그래밍 사용언어로 파이썬을 채택해 입문자의 편의를 도모하고 파일처리, 크롤링, csv데이터 추출을 통해 인공지능 교육에 활용한다.

  • PDF