• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.038 seconds

Transfer Learning Backbone Network Model Analysis for Human Activity Classification Using Imagery (영상기반 인체행위분류를 위한 전이학습 중추네트워크모델 분석)

  • Kim, Jong-Hwan;Ryu, Junyeul
    • Journal of the Korea Society for Simulation
    • /
    • v.31 no.1
    • /
    • pp.11-18
    • /
    • 2022
  • Recently, research to classify human activity using imagery has been actively conducted for the purpose of crime prevention and facility safety in public places and facilities. In order to improve the performance of human activity classification, most studies have applied deep learning based-transfer learning. However, despite the increase in the number of backbone network models that are the basis of deep learning as well as the diversification of architectures, research on finding a backbone network model suitable for the purpose of operation is insufficient due to the atmosphere of using a certain model. Thus, this study applies the transfer learning into recently developed deep learning backborn network models to build an intelligent system that classifies human activity using imagery. For this, 12 types of active and high-contact human activities based on sports, not basic human behaviors, were determined and 7,200 images were collected. After 20 epochs of transfer learning were equally applied to five backbone network models, we quantitatively analyzed them to find the best backbone network model for human activity classification in terms of learning process and resultant performance. As a result, XceptionNet model demonstrated 0.99 and 0.91 in training and validation accuracy, 0.96 and 0.91 in Top 2 accuracy and average precision, 1,566 sec in train process time and 260.4MB in model memory size. It was confirmed that the performance of XceptionNet was higher than that of other models.

Anomaly Classification of Railway Point Machine Using Sound Information and DNN (소리정보와 DNN을 이용한 선로전환기의 비정상 상황 분류)

  • Noh, Byeongjoon;Lee, Jonguk;Park, Daihee;Chung, Yonghwa;Kim, Heeyoung;Yoon, SukHan
    • Annual Conference of KIPS
    • /
    • 2016.10a
    • /
    • pp.611-614
    • /
    • 2016
  • 최근 철도 산업의 비중이 증가함에 따라 열차의 안정적인 주행이 그 어느 때보다 중요한 이슈로 부각되고있다. 특히, 열차의 진로 변경을 위한 핵심 요소인 선로전환기의 결함은 열차의 사고와 직결되는 장비 중 하나로써, 그 이상 여부를 사전에 인지하여 선로전환기의 안정성을 확보하기 위한 유지보수의 지능화 시스템이 필요하다. 본 논문에서는 선로전환기의 작동 시 발생하는 소리정보를 활용하여 선로전환기의 비정상 상황을 분류하는 시스템을 제안한다. 제안하는 시스템은 먼저, 선로전환기의 상황별 소리를 수집하고, 다양한 소리정보를 추출하여 특징 벡터를 생성한다. 다음으로, 딥러닝 모델 중 하나인 DNN(Deep Neural Network)을 이용하여 선로전환기의 비정상 상황을 분류한다. 실제 선로전환기의 전환 시 발생하는 소리 데이터를 기반으로 DNN의 파라미터에 따른 다양한 실험을 수행한 결과, 약 93.10%의 정확도를 갖는 안정적인 DNN 모델을 설계하였다.

Exploring process prediction based on deep learning: Focusing on dynamic recurrent neural networks (딥러닝 기반의 프로세스 예측에 관한 연구: 동적 순환신경망을 중심으로)

  • Kim, Jung-Yeon;Yoon, Seok-Joon;Lee, Bo-Kyoung
    • The Journal of Information Systems
    • /
    • v.27 no.4
    • /
    • pp.115-128
    • /
    • 2018
  • Purpose The purpose of this study is to predict future behaviors of business process. Specifically, this study tried to predict the last activities of process instances. It contributes to overcoming the limitations of existing approaches that they do not accurately reflect the actual behavior of business process and it requires a lot of effort and time every time they are applied to specific processes. Design/methodology/approach This study proposed a novel approach based using deep learning in the form of dynamic recurrent neural networks. To improve the accuracy of our prediction model based on the approach, we tried to adopt the latest techniques including new initialization functions(Xavier and He initializations). The proposed approach has been verified using real-life data of a domestic small and medium-sized business. Findings According to the experiment result, our approach achieves better prediction accuracy than the latest approach based on the static recurrent neural networks. It is also proved that much less effort and time are required to predict the behavior of business processes.

Prediction of Ship Resistance Performance Based on the Convolutional Neural Network With Voxelization (합성곱 신경망과 복셀화를 활용한 선박 저항 성능 예측)

  • Jongseo Park;Minjoo Choi;Gisu Song
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.60 no.2
    • /
    • pp.110-119
    • /
    • 2023
  • The prediction of ship resistance performance is typically obtained by Computational Fluid Dynamics (CFD) simulations or model tests in towing tank. However, these methods are both costly and time-consuming, so hull-form designers use statistical methods for a quick feed-back during the early design stage. It is well known that results from statistical methods are often less accurate compared to those from CFD simulations or model tests. To overcome this problem, this study suggests a new approach using a Convolution Neural Network (CNN) with voxelized hull-form data. By converting the original Computer Aided Design (CAD) data into three dimensional voxels, the CNN is able to abstract the hull-form data, focusing only on important features. For the verification, suggested method in this study was compared to a parametric method that uses hull parameters such as length overall and block coefficient as inputs. The results showed that the use of voxelized data significantly improves resistance performance prediction accuracy, compared to the parametric approach.

Loss Compression and Loss Correction Technique of 3D Point Cloud Data (3차원 데이터의 손실압축과 손실보정기법 연구)

  • Shin, Kwang-seong;Shin, Seong-yoon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.351-352
    • /
    • 2021
  • Due to the recent rapid change in the social environment due to Corona 19, the need for non-face-to-face/contact-based information exchange technology is rapidly emerging. Due to these changes, the development of an alternative system using a sense of immersion and a sense of presence is urgently required. In this study, in order to implement a video conferencing system, we implemented a technology for transmitting large-capacity 3D data in real time without delay. For this, the applied algorithm of GAN, the latest deep learning algorithm of the unsupervised learning series, was used.

  • PDF

Real-time Text Analysis with Dialogue State Tracking and Summarizing to Assist Emergency Call Reporting (긴급 신고 접수 지원을 위한 대화 상태 추적 및 요약 기반 실시간 텍스트 분석)

  • Oh, Kyo-Joong;Kim, Jinwon;Kim, Ilhoon;Lim, Chae-Gyun;Choi, Ho-Jin
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.16-21
    • /
    • 2021
  • 소방 본부의 119 종합상황실에서는 24시간 국민의 안전을 위해 긴급 신고를 접수한다. 수보사 분들은 24시간 교대 근무를 하며 신고 전화에 접수 및 응대 뿐만 아니라 출동, 지휘, 관제 업무를 함께 수행한다. 이 논문에서는 이 같은 수보사의 업무 지원을 위해 우리가 구축한 음성 인식과 결합된 실시간 텍스트 분석 시스템에 대해서 소개하고, 출동 지령서 자동 작성을 위한 키워드 검출 및 대화 요약 및 개체명 인식에 기반한 대화 상태 추척 방법에 대해 설명하고자 한다. 대화 요약 기술은 음성 인식 결과를 실시간으로 분석하여 중요한 키워드의 검출 및 지령서 자동 작성을 위한 후처리를 수행하며, 문장 수준에서 개체명 인식 및 관계 분석을 통한 목적 대화의 대화 상태 추적을 수행한다. 이 같은 응용 시스템은 딥러닝 및 기계학습 기반의 자연어 처리 시스템이 실시간으로 텍스트 분석을 수행할 수 있는 기술 수준이 되었음을 보여주며, 긴급한 상황에서 많은 신고 전화를 접수하는 수보사의 업무 효율 증진 뿐만 아니라, 정확하고 신속한 위치 파악으로 신고자를 도와주어 국민안전 증진에 도움을 줄 수 있을 것으로 기대된다.

  • PDF

Reinforcement of user authentication system of shared kick scooter using autoencoder and variational autoencoder (오토인코더와 변이형 오토인코더를 활용한 공유 킥보드 사용자 인증 시스템 강화)

  • Kang, Yea-Jun;Kim, Hyun-Ji;Lim, Se-Jin;Kim, Won-Woong;Seo, Hwa-Jeong
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.643-646
    • /
    • 2021
  • 경찰청에 따르면 도로교통법이 개정된 이후 3개월단 개인형 이동장치(PM)를 단속한 결과 무면허 운전이 3199건에 달하는 것으로 나타났다. 공유 킥보드 서비스의 경우 회원가입을 할 때 운전면허증 취득 여부를 확인하긴 하지만 서비스를 이용할 때는 별도의 확인 절차 없이 대여할 수 있기 때문에 운전면허증을 취득하지 않았어도 대여하는 경우가 발생한다. 본 논문에서는 공유 킥보드 서비스의 보안 취약점을 보완하기 위해 오토인코더와 변이형 오토인코더를 사용한 딥러닝 기반의 공유 킥보드 대리 대여 방지 시스템을 제안한다. 오토인코더는 지문 데이터로부터 특징만을 추출할 수 있어, 사용자의 지문 원본을 서버에게 노출시키지 않을 수 있다. 변이형 오토인코더는 생성형 모델로써, 사용자의 지문 데이터를 증폭 시켜 합성곱 신경망의 성능을 높이는데 도움을 준다. 이러한 오토인코더와 변이형 오토인코더의 특징을 이용해 사용자의 지문을 서버에 노출시키지 않으면서 적은 데이터로 신뢰성 높은 사용자 인증이 가능한 전동 킥보드 대여 시스템을 제안한다.

YOLO Based Automatic Sorting System for Plastic Recycling (플라스틱 재활용을 위한 YOLO기반의 자동 분류시스템)

  • Kim, Yong jun;Cho, Taeuk;Park, Hyung-kun
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.10a
    • /
    • pp.382-384
    • /
    • 2021
  • In this study, we implement a system that automatically classifies types of plastics using YOLO (You Only Look Once), a real-time object recognition algorithm. The system consists of Nvidia jetson nano, a small computer for deep learning and computer vision, with model trained to recognize plastic separation emission marks using YOLO. Using a webcam, recycling marks of plastic waste were recognized as PET, HDPE, and PP, and motors were adjusted to be classified according to the type. By implementing this automatic classifier, it is convenient in that it can reduce the labor of separating and discharging plastic separation marks by humans and increase the efficiency of recycling through accurate recycling.

  • PDF

System to Encourage Safe Driving of Personal Mobile Devices Based on Image Recognition and IoT (영상인식 및 IoT 기반 개인형 이동장치 안전 주행 장려 시스템 설계 및 개발)

  • Kim, Ji Soo;Kim, Mi Sung;Kim, Jae Hun;Yang, Jun Ho;Cho, Sang Eun;Nah, Jeong Eun
    • Annual Conference of KIPS
    • /
    • 2022.11a
    • /
    • pp.860-862
    • /
    • 2022
  • 4차 산업 혁명 시대의 각 분야에서 딥러닝, IoT 기술이 접목되면서 최신 기술이 빠르게 발전을 하는 추세이다. 동시에 최근 몇 년간 전동 킥보드 사용자가 급증하면서 사고 수는 배로 늘어나 교통 분야에서는 전동 킥보드에 많은 관심이 쏠리고 있다. 본 연구는 이 두 가지 분야를 접목하여 안전한 전동 킥보드 이용 문화 확립을 통해 스마트 도시에 이바지하고자 한다. 이를 위해서는 사용자들을 단속하는 것이 아닌 자율적으로 올바른 교통 문화에 이바지할 수 있도록 유도하는 것이 효과적이며 이 점이 기존 시스템과의 주요한 차이점이다. 본 논문에서는 영상인식과 IoT를 통한 안전 주행 장려 시스템을 제안하고 이를 앱에서 구현한 모습을 소개한다. 이를 통해 안전한 도로교통 문화뿐만 아니라 친환경 교통수단 이용 장려로 인한 탄소 저감 효과까지 기대한다.

Remaining persons estimation system using object recognition (객체인식을 활용한 잔류인원 추정 시스템)

  • Seong-woo Lee;Gyung-hyung Lee;Jin-hoon Seok;Kyeong-seop Kim;Min-seo Jeon;Seung-oh Choo;Tae-jin Yun
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2023.01a
    • /
    • pp.269-270
    • /
    • 2023
  • 재해, 재난 발생 시에 구조대가 건물 내부나 지하철 등, 특정 구역 내의 대피하지 못한 잔류인원을 제대로 파악하데 어려움을 겪는다. 이를 개선하고자 YOLO와 DeepSORT를 활용하여 통행자를 인식하여 특정 구역의 잔류인원을 파악하고 이를 서버를 통해 확인할 수 있는 시스템을 개발하였다. 실시간 객체인식 알고리즘인 YOLOv4-tiny와 실시간 객체추적기술인 DeepSORT 알고리즘을 이용하여 제안한 방법을 Ubuntu환경에서 구현하고, 실내 상황에 맞춰 통행자 동선을 고려해서 적용하였다. 개발한 시스템은 인식된 통행자 객체방향으로 출입을 구분하여 데이터를 서버에 저장한다. 이에 따라 재해 발생 시 구역의 잔류인원을 파악하여 빠르고 효율적으로 요구조자 위치와 인원을 예측할 수 있다.

  • PDF