• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,296, Processing Time 0.028 seconds

A mobile system development which has function of movie success prediction and recommendation based on deep learning (딥러닝 기반 영화 흥행 예측 및 영화 추천 모바일 시스템 개발)

  • Kim, Kyeong-Seok;Jang, Jae-Jun;Kang, Hyun-Kyu
    • Annual Conference on Human and Language Technology
    • /
    • 2019.10a
    • /
    • pp.443-448
    • /
    • 2019
  • 본 논문은 공공 데이터 Open API와 TMDB(The Movie Database) API를 이용하여 사용자의 선호 영화를 Google에서 제공해주는 Tensoflow로 인공신경망 딥러닝 학습하여 사용자가 선호하는 영화를 맞춤 추천하는 애플리케이션의 설계 및 구현에 대하여 서술한다. 본 애플리케이션은 사용자가 쉽게 영화를 추천받을 수 있도록 만들어진 애플리케이션으로 기존의 필터링 방식으로 추천하는 방식의 애플리케이션들과 달리 사용자의 취향을 딥러닝 학습을 통해 최적의 영화 Contents를 추천함과 아울러 기존 영화의 특성을 학습하여 흥행할 신규 영화를 예측하는 기능 또한 제공한다. 본 애플리케이션에 사용된 신규 영화 흥행 예측 모델은 약 85%의 정확도를 보이며 사용자 맞춤추천의 경우 기존 장르 추천이나 협업 필터링 추천보다 딥러닝을 통한 장르, 감독, 배우 등의 보다 세밀한 학습 추천이 가능하다.

  • PDF

High-performance and Highly Scalable Big Data Analysis Platform (고성능, 고확장성 빅데이터 분석 플랫폼)

  • Park, Kyongseok;Yu, Chan Hee;Kim, Yuseon;Um, Jung-Ho
    • Annual Conference of KIPS
    • /
    • 2021.11a
    • /
    • pp.535-536
    • /
    • 2021
  • 빅데이터를 활용한 기계학습 모델을 개발하기 위해서는 빅데이터 처리를 위한 플랫폼과 딥러닝 프레임 워크 등 고급 분석을 수행할 수 있는 도구의 활용이 동시에 요구된다. 그러나 빅데이터 플랫폼과 딥러닝 프레임워크를 자유롭게 활용하기 위해서는 상당한 수준의 기술적 지식과 경험이 필요하다. 또한 빅데이터를 이용한 딥러닝 모델을 개발할 경우 분산처리와 병렬처리에 대한 지식과 추가적인 작업이 요구된다. 본 연구에서는 빅데이터를 활용한 기계학습 모형을 자유롭게 개발 및 공유하고 분산 딥러닝을 위한 시스템적 지원을 통해 분야별로 딥러닝 모형을 개발하는 응용 연구자들이 활용할 수 있는 플랫폼을 제시하였다. 본 연구를 통해 다양한 분야의 연구자들이 자신의 데이터를 이용하여 모형을 개발할 경우 분산처리와 병렬처리를 위한 기술적 제약을 극복하고 보다 빠르고 효율적인 방법으로 모형을 개발하고 현업에 활용할 수 있을 것으로 기대한다.

A Study on Deep Learning Privacy (딥러닝 프라이버시에 관한 연구)

  • Si-Hyeon Roh;Byoung-Young Lee
    • Annual Conference of KIPS
    • /
    • 2024.05a
    • /
    • pp.207-209
    • /
    • 2024
  • 딥러닝은 선형 연산과 비선형 연산을 조합하여 목표로 하는 시스템을 잘 표현할 수 있는 함수를 찾기 위해 사용하며, 이미지 분류 및 생성, 거대 언어 모델 및 객체 인식의 영역에서 활발하게 사용되고 있다. 그러나 딥러닝 연산을 위해서는 모델과, 연산을 수행하고자 하는 데이터가 하나의 공간에 저장되어야 한다. 모델과 데이터를 데이터 소유자가 관리할 경우, 데이터 소유자가 모델 데이터의 프라이버시를 침해할 수 있으며, 이는 모델을 적대적 예제 생성 공격에 취약하도록 만드는 원인이 된다. 한편 모델과 데이터를 모델 소유자가 관리할 경우, 모델 소유자는 데이터의 프라이버시를 침해하여 데이터 소유자의 정보를 악의적으로 이용할 수 있다. 본 논문에서는 딥러닝 모델과 데이터의 프라이버시를 모두 보호하기 위해 주어진 딥러닝 모델의 암호화와 복호화를 수행하는 EncNet 을 구현하였으며, MNIST 와 Cifat-10 데이터셋에 대하여 실효성을 테스트하였다.

Using the Deep Learning for the System Architecture of Image Prediction (엔터프라이즈 환경의 딥 러닝을 활용한 이미지 예측 시스템 아키텍처)

  • Cheon, Eun Young;Choi, Sung-Ja
    • Journal of Digital Convergence
    • /
    • v.17 no.10
    • /
    • pp.259-264
    • /
    • 2019
  • This paper proposes an image prediction system architecture for deep running in enterprise environment. Easily transform into an artificial intelligence platform for an enterprise environment, and allow sufficient deep-running services to be developed and modified even in Java-centric architectures to improve the shortcomings of Java-centric enterprise development because artificial intelligence platforms are concentrated in the pipeline. In addition, based on the proposed environment, we propose a more accurate prediction system in the deep running architecture environment that has been previously learned through image forecasting experiments. Experiments show 95.23% accuracy in the image example provided for deep running to be performed, and the proposed model shows 96.54% accuracy compared to other similar models.

Development of Data Visualized Web System for Virtual Power Forecasting based on Open Sources based Location Services using Deep Learning (오픈소스 기반 지도 서비스를 이용한 딥러닝 실시간 가상 전력수요 예측 가시화 웹 시스템)

  • Lee, JeongHwi;Kim, Dong Keun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.8
    • /
    • pp.1005-1012
    • /
    • 2021
  • Recently, the use of various location-based services-based location information systems using maps on the web has been expanding, and there is a need for a monitoring system that can check power demand in real time as an alternative to energy saving. In this study, we developed a deep learning real-time virtual power demand prediction web system using open source-based mapping service to analyze and predict the characteristics of power demand data using deep learning. In particular, the proposed system uses the LSTM(Long Short-Term Memory) deep learning model to enable power demand and predictive analysis locally, and provides visualization of analyzed information. Future proposed systems will not only be utilized to identify and analyze the supply and demand and forecast status of energy by region, but also apply to other industrial energies.

Cancellation Scheme of impusive Noise based on Deep Learning in Power Line Communication System (딥러닝 기반 전력선 통신 시스템의 임펄시브 잡음 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.29-33
    • /
    • 2022
  • In this paper, we propose the deep learning based pre interference cancellation scheme algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information by applying a deep learning model at the transmitter. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Deep Learning Image-based Indoor Positioning System using Pyramid Beacon in Smartphone Augmented Reality Environment (스마트폰 증강현실 환경에서 피라미드 비콘을 활용한 딥러닝 영상기반 실내측위 시스템)

  • An, Hyeon Woo;Moon, Namme
    • Annual Conference of KIPS
    • /
    • 2019.10a
    • /
    • pp.1094-1097
    • /
    • 2019
  • 디지털화된 현실 환경을 증강현실속에서 투영시키기 위해선 증강현실 디바이스의 측위가 필수적이다. 하지만 대부분의 측위 방식이 측위 대상 디바이스에 대해 별도의 하드웨어나 센서를 요구하는데 이를 스마트폰 환경에서 충족시키기란 매우 힘든 일이다. 이에 본 논문은 스마트폰 환경에서 별도의 하드웨어를 요구하지 않는 딥러닝 영상기반 실내 측위 시스템을 제안한다. 제안하는 시스템은 측위를 위하여 설계된 피라미드형의 비콘을 활용하며 실시간에 가까운 피드백을 구현하기 위해 딥러닝 기법을 활용한 탐지를 진행한다. 본 논문에서는 상기한 두 개의 요소를 포함한 제안 시스템의 구성요소들을 설명하고 학습 방법과 비콘의 자세 측정 방법, 최종 측위 프로세스 등 전반적인 측위 프로세스를 설명한다.

A Study on Traffic Light Detection based on Deep Learning (딥러닝 기반 신호등 검출에 관한 연구)

  • Pak, Myeong-Suk;Kim, Sang-Hoon
    • Annual Conference of KIPS
    • /
    • 2017.11a
    • /
    • pp.969-970
    • /
    • 2017
  • 차량의 자율주행을 위해서 신호등의 검출은 매우 중요한 부분이며, 최근 딥러닝 기술이 자율주행 및 운전자 보조 시스템에 적용되고 있다. 본 논문에서는 객체 검출을 위한 잘 알려진 딥러닝 기법을 신호등 검출에 적용해 본다. 공개된 데이터셋을 이용하였으며 일반적인 컴퓨터 구성에서 실험하여 신호등 검출을 하였다.

Rule Visualization Tool for Understanding Knowledge of Trained Artificial Neural Network (인공 신경망이 학습한 지식을 이해하기 위한 규칙 시각화 도구)

  • Lee, Eun-Hun;Kim, Sun-bin;Lee, Hurn-joo;Kim, Hyeoncheol
    • Proceedings of The KACE
    • /
    • 2017.08a
    • /
    • pp.213-216
    • /
    • 2017
  • 오늘날 딥러닝은 교육을 포함한 다양한 분야에서 세상의 패러다임을 바꿀만큼 발전하고 있다. 그러나 딥러닝 모델이 어떤 지식을 습득하였는지 파악하기 어려워 딥러닝 시스템을 무조건적으로 신뢰할 수 없다는 것이 문제로 남아있다. 이 문제를 해결하기 위해 기존에 딥러닝이 학습한 결과를 If-then과 같은 형식의 규칙으로 추출하는 방법이 제안되었지만, 이러한 규칙은 사람이 이해하기에는 직관적이지 못하다는 단점을 가지고 있다. 본 논문에서는 이러한 문제를 해결하고자 딥러닝 모델이 습득한 지식을 규칙 형태로 추출하고 이를 시각화하여, 사람이 직관적으로 이해할 수 있는 형태로 표현하는 방법을 제시한다.

  • PDF

Commercial location recommend system using deep learning data analysis (딥러닝 데이터 분석을 통한 최적의 상권 입지 추천 기술 개발)

  • Park, Hyeong-Bin;Kim, So-Hee;Nam, Ji-Su;Cho, Yoon-Bin;Jun, Hee-Gook;Im, Dong-Hyuk
    • Annual Conference of KIPS
    • /
    • 2022.05a
    • /
    • pp.602-605
    • /
    • 2022
  • 본 연구는 대량의 상권 데이터를 바탕으로 머신 러닝과 딥러닝 분석을 이용하여 최적의 상권 입지를 추천하는 시스템 개발을 목표로 한다. 자영업자들의 오프라인 창업에 있어 개개인의 매장 정보에 기반한 입지 조건 판단은 앞으로의 매출에 중요한 시작점이다. 따라서 상권 정보를 기반으로 미래 매출을 예측하여 최적의 상권 입지를 추천하는 기술이 필요하다. 이를 위해 기존에 선행된 다수의 회귀 기법과 더불어 강하게 편향된 데이터를 레이블링 하여 다중 분류 기법으로도 문제를 접근한다. 최종적으로 딥러닝 모델과 합성하여 더 높은 성능을 이끌어내고 이로부터 편향 데이터 처리 방법과 딥러닝 모델과의 앙상블 중요성에 대해 논의하고자 한다.