• Title/Summary/Keyword: 딥러닝 시스템

Search Result 1,319, Processing Time 0.026 seconds

The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity (농산물 생산성 향상을 위한 딥러닝 기반 농업 의사결정시스템)

  • Park, Jinuk;Ahn, Heuihak;Lee, ByungKwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.11 no.5
    • /
    • pp.521-530
    • /
    • 2018
  • This paper proposes "The Agriculture Decision-making System(ADS) based on Deep Learning for improving crop productivity" that collects weather information based on location supporting precision agriculture, predicts current crop condition by using the collected information and real time crop data, and notifies a farmer of the result. The system works as follows. The ICM(Information Collection Module) collects weather information based on location supporting precision agriculture. The DRCM(Deep learning based Risk Calculation Module) predicts whether the C, H, N and moisture content of soil are appropriate to grow specific crops according to current weather. The RNM(Risk Notification Module) notifies a farmer of the prediction result based on the DRCM. The proposed system improves the stability because it reduces the accuracy reduction rate as the amount of data increases and is apply the unsupervised learning to the analysis stage compared to the existing system. As a result, the simulation result shows that the ADS improved the success rate of data analysis by about 6%. And the ADS predicts the current crop growth condition accurately, prevents in advance the crop diseases in various environments, and provides the optimized condition for growing crops.

A Study on the Design and Implementation of Multi-Disaster Drone System Using Deep Learning-Based Object Recognition and Optimal Path Planning (딥러닝 기반 객체 인식과 최적 경로 탐색을 통한 멀티 재난 드론 시스템 설계 및 구현에 대한 연구)

  • Kim, Jin-Hyeok;Lee, Tae-Hui;Han, Yamin;Byun, Heejung
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.10 no.4
    • /
    • pp.117-122
    • /
    • 2021
  • In recent years, human damage and loss of money due to various disasters such as typhoons, earthquakes, forest fires, landslides, and wars are steadily occurring, and a lot of manpower and funds are required to prevent and recover them. In this paper, we designed and developed a disaster drone system based on artificial intelligence in order to monitor these various disaster situations in advance and to quickly recognize and respond to disaster occurrence. In this study, multiple disaster drones are used in areas where it is difficult for humans to monitor, and each drone performs an efficient search with an optimal path by applying a deep learning-based optimal path algorithm. In addition, in order to solve the problem of insufficient battery capacity, which is a fundamental problem of drones, the optimal route of each drone is determined using Ant Colony Optimization (ACO) technology. In order to implement the proposed system, it was applied to a forest fire situation among various disaster situations, and a forest fire map was created based on the transmitted data, and a forest fire map was visually shown to the fire fighters dispatched by a drone equipped with a beam projector. In the proposed system, multiple drones can detect a disaster situation in a short time by simultaneously performing optimal path search and object recognition. Based on this research, it can be used to build disaster drone infrastructure, search for victims (sea, mountain, jungle), self-extinguishing fire using drones, and security drones.

A Comparison Study of RNN, CNN, and GAN Models in Sequential Recommendation (순차적 추천에서의 RNN, CNN 및 GAN 모델 비교 연구)

  • Yoon, Ji Hyung;Chung, Jaewon;Jang, Beakcheol
    • Journal of Internet Computing and Services
    • /
    • v.23 no.4
    • /
    • pp.21-33
    • /
    • 2022
  • Recently, the recommender system has been widely used in various fields such as movies, music, online shopping, and social media, and in the meantime, the recommender model has been developed from correlation analysis through the Apriori model, which can be said to be the first-generation model in the recommender system field. In 2005, many models have been proposed, including deep learning-based models, which are receiving a lot of attention within the recommender model. The recommender model can be classified into a collaborative filtering method, a content-based method, and a hybrid method that uses these two methods integrally. However, these basic methods are gradually losing their status as methodologies in the field as they fail to adapt to internal and external changing factors such as the rapidly changing user-item interaction and the development of big data. On the other hand, the importance of deep learning methodologies in recommender systems is increasing because of its advantages such as nonlinear transformation, representation learning, sequence modeling, and flexibility. In this paper, among deep learning methodologies, RNN, CNN, and GAN-based models suitable for sequential modeling that can accurately and flexibly analyze user-item interactions are classified, compared, and analyzed.

Feasibility of Deep Learning Algorithms for Binary Classification Problems (이진 분류문제에서의 딥러닝 알고리즘의 활용 가능성 평가)

  • Kim, Kitae;Lee, Bomi;Kim, Jong Woo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.95-108
    • /
    • 2017
  • Recently, AlphaGo which is Bakuk (Go) artificial intelligence program by Google DeepMind, had a huge victory against Lee Sedol. Many people thought that machines would not be able to win a man in Go games because the number of paths to make a one move is more than the number of atoms in the universe unlike chess, but the result was the opposite to what people predicted. After the match, artificial intelligence technology was focused as a core technology of the fourth industrial revolution and attracted attentions from various application domains. Especially, deep learning technique have been attracted as a core artificial intelligence technology used in the AlphaGo algorithm. The deep learning technique is already being applied to many problems. Especially, it shows good performance in image recognition field. In addition, it shows good performance in high dimensional data area such as voice, image and natural language, which was difficult to get good performance using existing machine learning techniques. However, in contrast, it is difficult to find deep leaning researches on traditional business data and structured data analysis. In this study, we tried to find out whether the deep learning techniques have been studied so far can be used not only for the recognition of high dimensional data but also for the binary classification problem of traditional business data analysis such as customer churn analysis, marketing response prediction, and default prediction. And we compare the performance of the deep learning techniques with that of traditional artificial neural network models. The experimental data in the paper is the telemarketing response data of a bank in Portugal. It has input variables such as age, occupation, loan status, and the number of previous telemarketing and has a binary target variable that records whether the customer intends to open an account or not. In this study, to evaluate the possibility of utilization of deep learning algorithms and techniques in binary classification problem, we compared the performance of various models using CNN, LSTM algorithm and dropout, which are widely used algorithms and techniques in deep learning, with that of MLP models which is a traditional artificial neural network model. However, since all the network design alternatives can not be tested due to the nature of the artificial neural network, the experiment was conducted based on restricted settings on the number of hidden layers, the number of neurons in the hidden layer, the number of output data (filters), and the application conditions of the dropout technique. The F1 Score was used to evaluate the performance of models to show how well the models work to classify the interesting class instead of the overall accuracy. The detail methods for applying each deep learning technique in the experiment is as follows. The CNN algorithm is a method that reads adjacent values from a specific value and recognizes the features, but it does not matter how close the distance of each business data field is because each field is usually independent. In this experiment, we set the filter size of the CNN algorithm as the number of fields to learn the whole characteristics of the data at once, and added a hidden layer to make decision based on the additional features. For the model having two LSTM layers, the input direction of the second layer is put in reversed position with first layer in order to reduce the influence from the position of each field. In the case of the dropout technique, we set the neurons to disappear with a probability of 0.5 for each hidden layer. The experimental results show that the predicted model with the highest F1 score was the CNN model using the dropout technique, and the next best model was the MLP model with two hidden layers using the dropout technique. In this study, we were able to get some findings as the experiment had proceeded. First, models using dropout techniques have a slightly more conservative prediction than those without dropout techniques, and it generally shows better performance in classification. Second, CNN models show better classification performance than MLP models. This is interesting because it has shown good performance in binary classification problems which it rarely have been applied to, as well as in the fields where it's effectiveness has been proven. Third, the LSTM algorithm seems to be unsuitable for binary classification problems because the training time is too long compared to the performance improvement. From these results, we can confirm that some of the deep learning algorithms can be applied to solve business binary classification problems.

Development of Korean Audio Caption System (한국어 오디오 캡션 시스템 개발)

  • Kang, Taeho;Kim, Juhee;Lee, Joonha
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2020.11a
    • /
    • pp.364-367
    • /
    • 2020
  • 오디오 캡셔닝(Audio Captioning)은 시스템이 입력으로 오디오 신호를 받아들이고 해당 신호의 텍스트 설명을 출력하는 중간 번역 작업이다. 이 논문에서는 컨볼루셔널 뉴럴 네트워크(CNN), 트랜스포머의 딥러닝 알고리즘을 사용하여 주변 환경 소리에 대한 오디오 캡셔닝을 자동으로 수행하고 한글화된 출력 결과를 제공하는 모델을 제시한다. 본 연구 결과, 모델의 성능 평가 척도인 SPIDEr 점수는 0.1977이 나왔다.

  • PDF

FMCW Signal Interpolation Scheme based on GAN for Indoor Location System in Indoor Disaster Situations (실내 재난시 재실자 위치 추적을 위한 GAN 기반의 FMCW 레이더 신호 보간법에 관한 연구)

  • Lee, Jeongpyo;Yang, Sangyi;Kim, Youngok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.341-342
    • /
    • 2022
  • 본 논문에서는 실내 재난 상황에서 재실자의 위치를 판단하기 위한 Frequency Modulated Continuous Wave(FMCW) 레이더 시스템의 정확도 향상을 위한 Generative Adversarial Networks(GAN) 기반의 신호 보간법을 제안한다. 제안된 실내 위치 추정 시스템은 딥러닝 학습 생성 모델을 활용하게 되는데, 학습을 위한 데이터의 수집이 용이하지 않아 부족하게 되는 학습데이터를 GAN 기법을 통해 확보하고자한다.

  • PDF

Research on Stock price prediction system based on BLSTM (BLSTM을 이용한 주가 예측 시스템 연구)

  • Hong, Sunghyuck
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.10
    • /
    • pp.19-24
    • /
    • 2020
  • Artificial intelligence technology, which is the core of the 4th industrial revolution, is making intelligent judgments through deep learning techniques and machine learning that it is impossible to predict if it is applied to stock prediction beyond human capabilities. In US fund management companies, artificial intelligence is replacing the role of stock market analyst, and research in this field is actively underway. In this study, we use BLSTM to reduce errors that occur in unidirectional prediction of the existing LSTM method, reduce errors in predictions by predicting in both directions, and macroscopic indicators that affect stock prices, namely, economic growth rate, economic indicators, interest rate, analyze the trade balance, exchange rate, and volume of currency. To help stock investment by accurately predicting the target price of stocks by analyzing the PBR, BPS, and ROE of individual stocks after analyzing macro-indicators, and by analyzing the purchase and sale quantities of foreigners, institutions, pension funds, etc., which have the most influence on stock prices.

Network Intrusion Detection System Using Feature Extraction Based on AutoEncoder in IOT environment (IOT 환경에서의 오토인코더 기반 특징 추출을 이용한 네트워크 침입탐지 시스템)

  • Lee, Joohwa;Park, Keehyun
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.12
    • /
    • pp.483-490
    • /
    • 2019
  • In the Network Intrusion Detection System (NIDS), the function of classification is very important, and detection performance depends on various features. Recently, a lot of research has been carried out on deep learning, but network intrusion detection system experience slowing down problems due to the large volume of traffic and a high dimensional features. Therefore, we do not use deep learning as a classification, but as a preprocessing process for feature extraction and propose a research method from which classifications can be made based on extracted features. A stacked AutoEncoder, which is a representative unsupervised learning of deep learning, is used to extract features and classifications using the Random Forest classification algorithm. Using the data collected in the IOT environment, the performance was more than 99% when normal and attack traffic are classified into multiclass, and the performance and detection rate were superior even when compared with other models such as AE-RF and Single-RF.

CNN Based Real-Time DNS DDoS Attack Detection System (CNN 기반의 실시간 DNS DDoS 공격 탐지 시스템)

  • Seo, In Hyuk;Lee, Ki-Taek;Yu, Jinhyun;Kim, Seungjoo
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.6 no.3
    • /
    • pp.135-142
    • /
    • 2017
  • DDoS (Distributed Denial of Service) exhausts the target server's resources using the large number of zombie pc, As a result normal users don't access to server. DDoS Attacks steadly increase by many attacker, and almost target of the attack is critical system such as IT Service Provider, Government Agency, Financial Institution. In this paper, We will introduce the CNN (Convolutional Neural Network) of deep learning based real-time detection system for DNS amplification Attack (DNS DDoS Attack). We use the dataset which is mixed with collected data in the real environment in order to overcome existing research limits that use only the data collected in the experiment environment. Also, we build a deep learning model based on Convolutional Neural Network (CNN) that is used in pattern recognition.

Research on Data Tuning Methods to Improve the Anomaly Detection Performance of Industrial Control Systems (산업제어시스템의 이상 탐지 성능 개선을 위한 데이터 보정 방안 연구)

  • JUN, SANGSO;Lee, Kyung-ho
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.32 no.4
    • /
    • pp.691-708
    • /
    • 2022
  • As the technology of machine learning and deep learning became common, it began to be applied to research on anomaly(abnormal) detection of industrial control systems. In Korea, the HAI dataset was developed and published to activate artificial intelligence research for abnormal detection of industrial control systems, and an AI contest for detecting industrial control system security threats is being conducted. Most of the anomaly detection studies have been to create a learning model with improved performance through the ensemble model method, which is applied either by modifying the existing deep learning algorithm or by applying it together with other algorithms. In this study, a study was conducted to improve the performance of anomaly detection with a post-processing method that detects abnormal data and corrects the labeling results, rather than the learning algorithm and data pre-processing process. Results It was confirmed that the results were improved by about 10% or more compared to the anomaly detection performance of the existing model.