• 제목/요약/키워드: 딥러닝 분류기

검색결과 135건 처리시간 0.029초

딥러닝을 이용한 양파 밭의 잡초 검출 연구 (Deep learning-based Automatic Weed Detection on Onion Field)

  • 김서정;이재수;김형석
    • 스마트미디어저널
    • /
    • 제7권3호
    • /
    • pp.16-21
    • /
    • 2018
  • 이 논문은 양파 밭에서 딥러닝 기반 자동 잡초 검출기의 설계 및 구현을 제시합니다. 이 시스템은 컨볼루션 뉴럴 네트워크를 기반으로 제안 된 영역을 선택합니다. 검출기는 양파 밭에서 직접 찍은 데이터 셋을 가지고 훈련됩니다. 학습이 완료 된 후에, 잡초가 될 확률이 매우 높은 후보 지역을 잡초로 간주합니다. Non-maximum suppression을 통해 오버랩된 박스가 최대한 적게 남게 됩니다. 다른 양파 농장을 통해 수집된 데이터를 통해 제안 된 분류기를 평가합니다. 분류 정확도는 고려 된 데이터 셋에서 약 99%를 보여주며, 제안된 방법이 양파 밭에서 잡초 검출과 관련하여 우수한 성능을 나타냄을 알 수 있습니다.

영화평 감성 분석기를 대상으로 한 설명자의 성능 분석 (Performance Analysis of Explainers for Sentiment Classifiers of Movie Reviews)

  • 박천용;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2020년도 제32회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.563-568
    • /
    • 2020
  • 본 연구에서는 블랙박스로 알려진 딥러닝 모델에 설명 근거를 제공할 수 있는 설명자 모델을 적용해 보았다. 영화평 감성 분석을 위해 MLP, CNN으로 구성된 딥러닝 모델과 결정트리의 앙상블인 Gradient Boosting 모델을 이용하여 감성 분류기를 구축하였다. 설명자 모델로는 기울기(gradient)을 기반으로 하는 IG와 레이어 사이의 가중치(weight)을 기반으로 하는 CAM, 그리고 설명가능한 대리 모델을 이용하는 LIME과 입력 속성에 대한 선형모델을 추정하는 SHAP을 사용하였다. 설명자 모델의 특성을 보기 위하여 히트맵과 관련성 높은 N개의 속성을 추출해 보았다. 설명자가 제공하는 기여도에 따라 입력 속성을 제거해 가며 분류기 성능 변화를 측정하는 정량적 평가도 수행하였다. 또한, 사람의 판단 근거와의 일치도를 살펴볼 수 있는 '설명 근거 정확도'라는 새로운 평가 방법을 제안하여 적용해 보았다.

  • PDF

딥러닝 기반 소나무 재선충 피해목 탐색 (Searching the Damaged Pine Trees from Wilt Disease Based on Deep Learning)

  • 장예예;유첩;김병준;선주남;이준환
    • 스마트미디어저널
    • /
    • 제9권3호
    • /
    • pp.46-51
    • /
    • 2020
  • 소나무 재선충은 한국과 일본, 중국을 포함한 동아시아 지역의 소나무산림에 막대한 피해를 주는 원인이며, 피해목의 조기 발견과 제거는 재선충 확산을 막는 효과적인 방법이다. 본 논문에서는 드론으로 촬영되고 처리된 RGB 정사영상을 딥러닝 분류에 의한 재선충 피해목 탐색방법을 제안한다. 제안된 방법은 학습영상 데이터가 많지 않다는 가정아래 ResNet18을 백본으로 하는 패치기반의 분류기를 구성하고 RGB 정사영상을 분류하고 그 결과를 heatmap 형태로 만든다. 제작된 정사영상의 heat map는 재선충 피해목의 분포를 알아내고 확산해가는 모습을 관찰할 수 있게 하며, 재선충 피해목 지역의 RGB 분포 특징을 추출해낼 수도 있다. 본 연구의 패치기반 분류기 성능은 94.7%의 정확도를 나타내었다.

Deep Learning based Scrapbox Accumulated Status Measuring

  • Seo, Ye-In;Jeong, Eui-Han;Kim, Dong-Ju
    • 한국컴퓨터정보학회논문지
    • /
    • 제25권3호
    • /
    • pp.27-32
    • /
    • 2020
  • 본 논문에서는 금속스크랩이 쌓이는 스크랩박스의 적치 상태를 측정하는 알고리즘을 제안한다. 적치 상태 측정 문제를 다중 클래스 분류 문제로 정의하여, 딥러닝 기법을 이용해 스크랩박스 촬영 영상만으로 적치 상태를 구분하도록 하였다. Transfer Learning 방식으로 학습을 진행하였으며, 딥러닝 모델은 NASNet-A를 이용하였다. 더불어 분류 모델의 정확도를 높이기 위해 학습된 NASNet-A에 랜덤포레스트 분류기를 결합하였으며, 후처리를 통해 안전성을 높였다. 현장에서 수집된 4,195개의 데이터로 테스트한 결과 NASNet-A만 적용했을때 정확도 55%를 보였으며, 제안 방식인 Random Forest를 결합한 NASNet은 88%로 향상된 정확도를 달성하였다.

An Efficient Deep Learning Ensemble Using a Distribution of Label Embedding

  • Park, Saerom
    • 한국컴퓨터정보학회논문지
    • /
    • 제26권1호
    • /
    • pp.27-35
    • /
    • 2021
  • 본 연구에서는 레이블 임베딩의 분포를 반영하는 딥러닝 모형을 위한 새로운 스태킹 앙상블 방법론을 제안하였다. 제안된 앙상블 방법론은 기본 딥러닝 분류기를 학습하는 과정과 학습된 모형으로 부터 얻어진 레이블 임베딩을 이용한 군집화 결과로부터 소분류기들을 학습하는 과정으로 이루어져 있다. 본 방법론은 주어진 다중 분류 문제를 군집화 결과를 활용하여 소 문제들로 나누는 것을 기본으로 한다. 군집화에 사용되는 레이블 임베딩은 처음 학습한 기본 딥러닝 분류기의 마지막 층의 가중치로부터 얻어질 수 있다. 군집화 결과를 기반으로 군집화 내의 클래스들을 분류하는 소분류기들을 군집의 수만큼 구축하여 학습한다. 실험 결과 기본 분류기로부터의 레이블 임베딩이 클래스 간의 관계를 잘 반영한다는 것을 확인하였고, 이를 기반으로 한 앙상블 방법론이 CIFAR 100 데이터에 대해서 분류 성능을 향상시킬 수 있다는 것을 확인할 수 있었다.

딥러닝 기법을 사용하는 소프트웨어 결함 예측 모델 (Prediction Model of Software Fault using Deep Learning Methods)

  • 홍의석
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.111-117
    • /
    • 2022
  • 수십년간 매우 많은 소프트웨어 결함 예측 모델에 관한 연구들이 수행되었으며, 그들 중 기계학습 기법을 사용한 모델들이 가장 좋은 성능을 보였다. 딥러닝 기법은 기계학습 분야에서 가장 각광받는 기술이 되었지만 결함 예측 모델의 분류기로 사용된 연구는 거의 없었다. 몇몇 연구들은 모델의 입력 소스나 구문 데이터로부터 시맨틱 정보를 얻어내는데 딥러닝을 사용하였다. 본 논문은 3개 이상의 은닉층을 갖는 MLP를 이용하여 모델 구조와 하이퍼 파라미터를 변경하여 여러 모델들을 제작하였다. 모델 평가 실험 결과 MLP 기반 딥러닝 모델들은 기존 결함 예측 모델들과 Accuracy는 비슷한 성능을 보였으나 AUC는 유의미하게 더 우수한 성능을 보였다. 또한 또다른 딥러닝 모델인 CNN 모델보다도 더 나은 성능을 보였다.

생성적 적대 네트워크를 이용한 감성인식 학습데이터 자동 생성 (Automatic Generation of Training Corpus for a Sentiment Analysis Using a Generative Adversarial Network)

  • 박천용;최용석;이공주
    • 한국정보과학회 언어공학연구회:학술대회논문집(한글 및 한국어 정보처리)
    • /
    • 한국정보과학회언어공학연구회 2018년도 제30회 한글 및 한국어 정보처리 학술대회
    • /
    • pp.389-393
    • /
    • 2018
  • 딥러닝의 발달로 기계번역, 대화 시스템 등의 자연언어처리 분야가 크게 발전하였다. 딥러닝 모델의 성능을 향상시키기 위해서는 많은 데이터가 필요하다. 그러나 많은 데이터를 수집하기 위해서는 많은 시간과 노력이 소요된다. 본 연구에서는 이미지 생성 모델로 좋은 성능을 보이고 있는 생성적 적대 네트워크(Generative adverasarial network)를 문장 생성에 적용해본다. 본 연구에서는 긍/부정 조건에 따른 문장을 자동 생성하기 위해 SeqGAN 모델을 수정하여 사용한다. 그리고 분류기를 포함한 SeqGAN이 긍/부정 감성인식 학습데이터를 자동 생성할 수 있는지 실험한다. 실험을 수행한 결과, 분류기를 포함한 SeqGAN 모델이 생성한 문장과 학습데이터를 혼용하여 학습할 경우 실제 학습데이터만 학습 시킨 경우보다 좋은 정확도를 보였다.

  • PDF

개인 맞춤형 광고를 위한 딥러닝 검출 툴을 이용한 영상 카테고리 분류기 (Video Category Classifier for Personalized Advertisements using Deep Learning Detection Tool YOLO)

  • 박진영;안원진;안천수;강석주
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2019년도 추계학술대회
    • /
    • pp.237-239
    • /
    • 2019
  • 최근 인터넷 영상 매체가 발전하고 대중화되며 이를 통한 광고 효과가 커지고 있다. 이들 영상에 관련된 광고를 자동으로 연결할 수 있다면 효과적일 것이다. 본 논문은 딥러닝 검출 툴을 적용한 영상 카테고리 분류 기법을 제안한다. 이 기법은 주어진 영상을 몇 가지 카테고리로 분류하고, 분류 정보를 바탕으로 관련성이 높은 광고를 연결지어, 결과적으로 영상 시청자에게 맞춤형 광고를 제시한다.

  • PDF

국내 학술지 출현 학과정보 데이터셋 구축 및 자동분류 (Dataset construction and Automatic classification of Department information appearing in Domestic journals)

  • 김병규;류범종;심형섭
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2023년도 제67차 동계학술대회논문집 31권1호
    • /
    • pp.343-344
    • /
    • 2023
  • 과학기술 문헌을 활용한 계량정보분석에서 학과정보의 활용은 매유 유용하다. 본 논문에서는 한국과학기술인용색인데이터베이스에 등재된 국내 학술지 논문에 출현하는 대학기관 소속 저자의 학과정보를 추출하고 데이터 정제 및 학과유형 분류 처리를 통해 학과정보 데이터셋을 구축하였다. 학과정보 데이터셋을 학습데이터와 검증데이터로 이용하여 딥러닝 기반의 자동분류 모델을 구현하였으며, 모델 성능 평가 결과는 한글 학과정보 기준 98.6%와 영문 학과정보 기준 97.6%의 정확률로 측정되었다. 향후 과학기술 분야별 지적관계 분석 및 논문 주제분류 등에 학과정보 자동분류 처리기의 활용이 기대된다.

  • PDF

한국어 학습 모델별 한국어 쓰기 답안지 점수 구간 예측 성능 비교 (Comparison of Korean Classification Models' Korean Essay Score Range Prediction Performance)

  • 조희련;임현열;이유미;차준우
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제11권3호
    • /
    • pp.133-140
    • /
    • 2022
  • 우리는 유학생이 작성한 한국어 쓰기 답안지의 점수 구간을 예측하는 문제에서 세 개의 딥러닝 기반 한국어 언어모델의 예측 성능을 조사한다. 이를 위해 총 304편의 답안지로 구성된 실험 데이터 세트를 구축하였는데, 답안지의 주제는 직업 선택의 기준('직업'), 행복한 삶의 조건('행복'), 돈과 행복('경제'), 성공의 정의('성공')로 다양하다. 이들 답안지는 네 개의 점수 구간으로 구분되어 평어 레이블(A, B, C, D)이 매겨졌고, 총 11건의 점수 구간 예측 실험이 시행되었다. 구체적으로는 5개의 '직업' 답안지 점수 구간(평어) 예측 실험, 5개의 '행복' 답안지 점수 구간 예측 실험, 1개의 혼합 답안지 점수 구간 예측 실험이 시행되었다. 이들 실험에서 세 개의 딥러닝 기반 한국어 언어모델(KoBERT, KcBERT, KR-BERT)이 다양한 훈련 데이터로 미세조정되었다. 또 두 개의 전통적인 확률적 기계학습 분류기(나이브 베이즈와 로지스틱 회귀)도 그 성능이 분석되었다. 실험 결과 딥러닝 기반 한국어 언어모델이 전통적인 기계학습 분류기보다 우수한 성능을 보였으며, 특히 KR-BERT는 전반적인 평균 예측 정확도가 55.83%로 가장 우수한 성능을 보였다. 그 다음은 KcBERT(55.77%)였고 KoBERT(54.91%)가 뒤를 이었다. 나이브 베이즈와 로지스틱 회귀 분류기의 성능은 각각 52.52%와 50.28%였다. 학습된 분류기 모두 훈련 데이터의 부족과 데이터 분포의 불균형 때문에 예측 성능이 별로 높지 않았고, 분류기의 어휘가 글쓰기 답안지의 오류를 제대로 포착하지 못하는 한계가 있었다. 이 두 가지 한계를 극복하면 분류기의 성능이 향상될 것으로 보인다.