• Title/Summary/Keyword: 딥러닝 모델 비교

Search Result 602, Processing Time 0.03 seconds

Cancellation Scheme of impusive Noise based on Deep Learning in Power Line Communication System (딥러닝 기반 전력선 통신 시스템의 임펄시브 잡음 제거 기법)

  • Seo, Sung-Il
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.22 no.4
    • /
    • pp.29-33
    • /
    • 2022
  • In this paper, we propose the deep learning based pre interference cancellation scheme algorithm for power line communication (PLC) systems in smart grid. The proposed scheme estimates the channel noise information by applying a deep learning model at the transmitter. Then, the estimated channel noise is updated in database. In the modulator, the channel noise which reduces the power line communication performance is effectively removed through interference cancellation technique. As an impulsive noise model, Middleton Class A interference model was employed. The performance is evaluated in terms of bit error rate (BER). From the simulation results, it is confirmed that the proposed scheme has better BER performance compared to the theoretical model based on additive white Gaussian noise. As a result, the proposed interference cancellation with deep learning improves the signal quality of PLC systems by effectively removing the channel noise. The results of the paper can be applied to PLC for smart grid and general communication systems.

Deep Learning-Based Stock Fluctuation Prediction According to Overseas Indices and Trading Trend by Investors (해외지수와 투자자별 매매 동향에 따른 딥러닝 기반 주가 등락 예측)

  • Kim, Tae Seung;Lee, Soowon
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.10 no.9
    • /
    • pp.367-374
    • /
    • 2021
  • Stock price prediction is a subject of research in various fields such as economy, statistics, computer engineering, etc. In recent years, researches on predicting the movement of stock prices by learning artificial intelligence models from various indicators such as basic indicators and technical indicators have become active. This study proposes a deep learning model that predicts the ups and downs of KOSPI from overseas indices such as S&P500, past KOSPI indices, and trading trends by KOSPI investors. The proposed model extracts a latent variable using a stacked auto-encoder to predict stock price fluctuations, and predicts the fluctuation of the closing price compared to the market price of the day by learning an LSTM suitable for learning time series data from the extracted latent variable to decide to buy or sell based on the value. As a result of comparing the returns and prediction accuracy of the proposed model and the comparative models, the proposed model showed better performance than the comparative models.

Effect on self-enhancement of deep-learning inference by repeated training of false detection cases in tunnel accident image detection (터널 내 돌발상황 오탐지 영상의 반복 학습을 통한 딥러닝 추론 성능의 자가 성장 효과)

  • Lee, Kyu Beom;Shin, Hyu Soung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.3
    • /
    • pp.419-432
    • /
    • 2019
  • Most of deep learning model training was proceeded by supervised learning, which is to train labeling data composed by inputs and corresponding outputs. Labeling data was directly generated manually, so labeling accuracy of data is relatively high. However, it requires heavy efforts in securing data because of cost and time. Additionally, the main goal of supervised learning is to improve detection performance for 'True Positive' data but not to reduce occurrence of 'False Positive' data. In this paper, the occurrence of unpredictable 'False Positive' appears by trained modes with labeling data and 'True Positive' data in monitoring of deep learning-based CCTV accident detection system, which is under operation at a tunnel monitoring center. Those types of 'False Positive' to 'fire' or 'person' objects were frequently taking place for lights of working vehicle, reflecting sunlight at tunnel entrance, long black feature which occurs to the part of lane or car, etc. To solve this problem, a deep learning model was developed by simultaneously training the 'False Positive' data generated in the field and the labeling data. As a result, in comparison with the model that was trained only by the existing labeling data, the re-inference performance with respect to the labeling data was improved. In addition, re-inference of the 'False Positive' data shows that the number of 'False Positive' for the persons were more reduced in case of training model including many 'False Positive' data. By training of the 'False Positive' data, the capability of field application of the deep learning model was improved automatically.

Analysis of Deep Learning Model Vulnerability According to Input Mutation (입력 변이에 따른 딥러닝 모델 취약점 연구 및 검증)

  • Kim, Jaeuk;Park, Leo Hyun;Kwon, Taekyoung
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.1
    • /
    • pp.51-59
    • /
    • 2021
  • The deep learning model can produce false prediction results due to inputs that deviate from training data through variation, which leads to fatal accidents in areas such as autonomous driving and security. To ensure reliability of the model, the model's coping ability for exceptional situations should be verified through various mutations. However, previous studies were carried out on limited scope of models and used several mutation types without separating them. Based on the CIFAR10 data set, widely used dataset for deep learning verification, this study carries out reliability verification for total of six models including various commercialized models and their additional versions. To this end, six types of input mutation algorithms that may occur in real life are applied individually with their various parameters to the dataset to compare the accuracy of the models for each of them to rigorously identify vulnerabilities of the models associated with a particular mutation type.

A Study on Patent Literature Classification Using Distributed Representation of Technical Terms (기술용어 분산표현을 활용한 특허문헌 분류에 관한 연구)

  • Choi, Yunsoo;Choi, Sung-Pil
    • Journal of the Korean Society for Library and Information Science
    • /
    • v.53 no.2
    • /
    • pp.179-199
    • /
    • 2019
  • In this paper, we propose optimal methodologies for classifying patent literature by examining various feature extraction methods, machine learning and deep learning models, and provide optimal performance through experiments. We compared the traditional BoW method and a distributed representation method (word embedding vector) as a feature extraction, and compared the morphological analysis and multi gram as the method of constructing the document collection. In addition, classification performance was verified using traditional machine learning model and deep learning model. Experimental results show that the best performance is achieved when we apply the deep learning model with distributed representation and morphological analysis based feature extraction. In Section, Class and Subclass classification experiments, We improved the performance by 5.71%, 18.84% and 21.53%, respectively, compared with traditional classification methods.

Empirical Study on Analyzing Training Data for CNN-based Product Classification Deep Learning Model (CNN기반 상품분류 딥러닝모델을 위한 학습데이터 영향 실증 분석)

  • Lee, Nakyong;Kim, Jooyeon;Shim, Junho
    • The Journal of Society for e-Business Studies
    • /
    • v.26 no.1
    • /
    • pp.107-126
    • /
    • 2021
  • In e-commerce, rapid and accurate automatic product classification according to product information is important. Recent developments in deep learning technology have been actively applied to automatic product classification. In order to develop a deep learning model with good performance, the quality of training data and data preprocessing suitable for the model are crucial. In this study, when categories are inferred based on text product data using a deep learning model, both effects of the data preprocessing and of the selection of training data are extensively compared and analyzed. We employ our CNN model as an example of deep learning model. In the experimental analysis, we use a real e-commerce data to ensure the verification of the study results. The empirical analysis and results shown in this study may be meaningful as a reference study for improving performance when developing a deep learning product classification model.

Analysis of Deep Learning Model for the Development of an Optimized Vehicle Occupancy Detection System (최적화된 차량 탑승인원 감지시스템 개발을 위한 딥러닝 모델 분석)

  • Lee, JiWon;Lee, DongJin;Jang, SungJin;Choi, DongGyu;Jang, JongWook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.1
    • /
    • pp.146-151
    • /
    • 2021
  • Currently, the demand for vehicles from one family is increasing in many countries at home and abroad, reducing the number of people on the vehicle and increasing the number of vehicles on the road. The multi-passenger lane system, which is available to solve the problem of traffic congestion, is being implemented. The system allows police to monitor fast-moving vehicles with their own eyes to crack down on illegal vehicles, which is less accurate and accompanied by the risk of accidents. To address these problems, applying deep learning object recognition techniques using images from road sites will solve the aforementioned problems. Therefore, in this paper, we compare and analyze the performance of existing deep learning models, select a deep learning model that can identify real-time vehicle occupants through video, and propose a vehicle occupancy detection algorithm that complements the object-ident model's problems.

IF2bNet: An Optimized Deep Learning Architecture for Fire Detection Based on Explainable AI (IF2bNet: 화재 감지를 위한 설명 가능 AI 기반 최적화된 딥러닝 아키텍처)

  • Won Jin;Mi-Hwa Song
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2024.05a
    • /
    • pp.719-720
    • /
    • 2024
  • 센서 기반의 자동화재탐지설비의 역할을 지원할 목적으로, 합성곱 신경망 기반의 AI 화재 감시장비등이 연구되어왔다. ai 기반 화재 감지에 사용되는 알고리즘은 전이학습을 주로 이용하고 있고, 이는 화재 감지에 기여도가 낮은 프로세스가 내장되어 있을 가능성이 존재하여, 딥러닝 모델의 복잡성을 가중시키는 원인이 될 수 있다. 본 연구에서는 이러한 모델의 복잡성을 개선하고자 다양한 딥러닝 및 해석 기술들을 분석하였고, 분석 결과를 토대로 화재 감지에 최적화된 아키텍처인 "IF2bNet" 을 제안한다. 구현한 아키텍처의 성능을 비교한 결과 동일한 성능을 내면서, 파라미터를 약 0.1 배로 경량화 하여, 복잡성을 완화하였다.

De-noising in Power Line Communication Using Noise Modeling Based on Deep Learning (딥 러닝 기반의 잡음 모델링을 이용한 전력선 통신에서의 잡음 제거)

  • Sun, Young-Ghyu;Hwang, Yu-Min;Sim, Issac;Kim, Jin-Young
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.4
    • /
    • pp.55-60
    • /
    • 2018
  • This paper shows the initial results of a study applying deep learning technology in power line communication. In this paper, we propose a system that effectively removes noise by applying a deep learning technique to eliminate noise, which is a cause of reduced power line communication performance, by adding a deep learning model at the receive part. To train the deep learning model, it is necessary to store the data. Therefore, it is assumed that the existing data is stored, and the proposed system is simulated. we compare the theoretical result of the additive white Gaussian noise channel with the bit error rate and confirm that the proposed system model improves the communication performance by removing the noise.

Analysis of Deep learning Quantization Technology for Micro-sized IoT devices (초소형 IoT 장치에 구현 가능한 딥러닝 양자화 기술 분석)

  • YoungMin KIM;KyungHyun Han;Seong Oun Hwang
    • Journal of Internet of Things and Convergence
    • /
    • v.9 no.1
    • /
    • pp.9-17
    • /
    • 2023
  • Deep learning with large amount of computations is difficult to implement on micro-sized IoT devices or moblie devices. Recently, lightweight deep learning technologies have been introduced to make sure that deep learning can be implemented even on small devices by reducing the amount of computation of the model. Quantization is one of lightweight techniques that can be efficiently used to reduce the memory and size of the model by expressing parameter values with continuous distribution as discrete values of fixed bits. However, the accuracy of the model is reduced due to discrete value representation in quantization. In this paper, we introduce various quantization techniques to correct the accuracy. We selected APoT and EWGS from existing quantization techniques, and comparatively analyzed the results through experimentations The selected techniques were trained and tested with CIFAR-10 or CIFAR-100 datasets in the ResNet model. We found out problems with them through experimental results analysis and presented directions for future research.