• Title/Summary/Keyword: 디젤 입자상 물질

Search Result 164, Processing Time 0.025 seconds

Rigorous Modeling of Single Channel DPF Filtration and Sensitivity Analysis of Important Model Parameters (단일 채널 DPF의 PM 포집 모델링 및 모델 파라미터의 민감도 해석)

  • Jung, Seung-Chai;Park, Jong-Sun;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.6
    • /
    • pp.127-136
    • /
    • 2006
  • Prediction of diesel particulate filtration is typically made by virtue of modeling of particulate matter(PM) collection. The model is closed with filtration parameters reflecting all small scale phenomena associated with PM trapping, and these parameters are to be traced back by inversely analyzing large-scale empirical data-the pressure drop histories. Included are soot cake permeability, soot cake density, soot density in the porous filter wall, and percolation constant. In the present study, a series of single channel DPF experiment is conducted, pressure histories are inversely analyzed, and the essential filtration parameters are deducted by DPF filtration model formulated with non-linear description of soot cake regression. Sensitivity analyses of model parameters are also made. Results showed that filtration transients are significantly altered by the extent of percolation constant, and the soot density in the porous filter wall is controlling the filtration qualities in deep-bed filtration regime. In addition, effect of soot particle size on filtration quality is distinct in a period of soot cake regime.

Effects of Pitch Length of Stack-type EGR Cooler on Heat Exchange Characteristics in a Diesel Engine (적층형 EGR Cooler의 Pitch 길이 변화가 열교환 특성에 미치는 영향)

  • Hwang, Se-Joon;Kim, Min-Chol;Jang, Sang-Hoon;Kim, Hyung-Man
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.18 no.2
    • /
    • pp.135-140
    • /
    • 2010
  • An important goal in diesel engine research is the development of a means to reduce the emissions of nitrogen oxides (NOX). The use of a cooled exhaust gas recirculation (EGR) system is one of the most effective techniques currently available for reducing nitrogen oxides. Since Particular Matter (PM) fouling reduces the efficiency of an EGR cooler, a trade-off exists between the amount of NOX and PM emissions, especially at high engine loads. In the present study, engine dynamometer experiments have been performed to investigate the heat exchange characteristics of the stack-type EGR coolers with wave fin pitches of 3.6 and 4.6 mm. The results show that the heat exchange effectiveness is decreased as surface area decrease with pitch of 4.6 mm due to PM fouling. As surface area increase at pitch of 3.6 mm, super-cooling happens in the recirculated exhaust gas.

Effects of Parameters of Combustion and Fuel Injection System on Performance and Exhaust Emissions in a Diesel Engine (연소계 및 연료분사계의 구성인자가 디젤엔진의 성능 및 배기 배출물에 미치는 영향)

  • Lee, Joon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.14 no.2
    • /
    • pp.166-173
    • /
    • 2006
  • This study investigates a heavy duty diesel engine with swept vol. 12.6L, 4cycle-OHC type to verify the effects of the performance and exhaust gas emission according to the variable specifications of both swirl ratio and flow coefficient in inlet port, combustion bowl and fuel injection system. To meet the high BMEP and stringent exhaust emission standard, a turbocharger with wastegate and an intercooler were installed in the engine. Helical port, major design parameters for combustion chamber and electronic fuel injection pump with 1,000bar were reviewed and applied. Confirmation tests were also performed to meet the target value, $NO_x$ 5.0g/kWh and PM 0.1g/kWh of Euro3 exhaust emission legislation. The results of this study show that not only is it effective to use a relatively bigger bowl size for controlling rapid burning condition due to the decreased in-bowl swirl, but also to use a concave cam with double injection rates to decrease $NO_x$.

A Detailed Examination of Various Porous Media Flow Models for Collection Efficiency and Pressure Drop of Diesel Particulate Filter (DPF의 PM 포집효율 예측을 위한 다양한 다공성 매질 유동장 모델 해석)

  • Jung, Seung-Chai;Yoon, Woong-Sup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.78-88
    • /
    • 2007
  • In the present study a detailed examination of various porous media models for predicting filtration efficiency and pressure drop of diesel particulate filter (DPF), such as sphere-in-cell and constricted tube models, are attempted. In order for demonstrating their validities of correct estimation on permeability, geometry of property configurations common in commercial cordierite DPFs are correlated to the porous media flow models, and validations of predicted filtration efficiencies due to the use of different unit collectors are made with experiments. The result shows that the porosity, pore size and permeability of cordierite DPF can be successfully correlated by Kuwabara flow field with correction factor of 0.6. The unit collector efficiency predicted by sphere-in-cell model agrees very well with measurements in accumulation mode, whereas that by constricted tube model with significant prediction error.

The Effects of Engine Speed and Load of the Partial Premixed Diesel Compressed Ignition Engine Applied with the Split Injection Method on Exhaust Gas and IMEP Characteristics (2단 분사방식을 적용한 부분 예혼합 디젤 압축착화 연소 엔진의 회전속도 및 부하 변화가 배출 가스 및 IMEP특성에 미치는 영향)

  • Kang, Jeong-Ho;Lee, Sung-Man;Chung, Jae-Woo;Kang, Woo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.1
    • /
    • pp.162-170
    • /
    • 2007
  • Currently, due to the serious world-wide air pollution by substances emitted from vehicles, emission control is enforced more firmly and it is expected that the regulation requirements for emission will become more severe. Anew concept combustion technology that can reduce the NOx and PM in relation to combustion is urgently required. Due to such social requirement, technologically advanced countries are making efforts to develop an environment-friendly vehicle engine at the nation-wide level in order to respond to the reinforced emission control. As a core combustion technology among new combustion technologies for the next generation engine, the homogeneous charge compression ignition (HCCI) is expanding its application range by adopting multiple combustion mode, catalyst, direct fuel injection and partially premixed combustion. This study used a 2-staged injection method in order to apply the HCCI combustion method without significantly altering engine specifications in the aspect of multiple combustion mode and practicality by referring to the results of studies on the HCCI engine. And it is investigated that the effects of the engine rpm and load(or A/F) to emission characteristics.

Effect of Containing Promoter on SCR Catalysts (SCR 촉매에 포함된 조촉매 영향)

  • Seo, Choong-Kil
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.9
    • /
    • pp.474-481
    • /
    • 2018
  • The policy-making and technological development of eco-friendly automobiles designed to increase their supply is ongoing, but the internal combustion engine still accounts for approximately 95% of automobiles in use. To meet the stricter emission regulations of internal combustion engines based on fossil fuels, the proportion of after-treatments for vehicles and (ocean going) vessels is increasing continuously. As diesel engines have high power and good fuel economy in addition to less CO2 emissions, their market share is increasing not only in commercial vehicles, but also in passenger cars. Because of the characteristics of the diesel combustion, however, NOx is generated in localized high-temperature combustion regions, and particulates are formed in the zones of diffusion combustion. LNT and urea-SCR catalysts have been developed for the after-treatment of exhaust gas to reduce NOx in diesel vehicles. This study examined the effect of a containing promoter on SCR catalysts to cope with the severe exhaust gas regulation. The de-NOx performance of the Mn-SCR catalyst was the best, and the de-NOx performance was improved as the ion exchange rate between Mn ion and Zeolyst was good and the activation energy was low. The de-NOx performance of the 7Cu-15Ba/78Zeoyst catalyst was 32% at $200^{\circ}C$ and 30% at $500^{\circ}C$, and showed the highest performance. The NOx storage material of BaO loaded as a promoter was well dispersed in the Cu-SCR catalyst and the additional de-NOx performance of BaO was affected by the reduction reaction of the Cu-SCR catalyst. Among the three catalysts, the 7Cu-15Ba/Zeolyst SCR catalyst was resistant to thermal degradation. The same type of CuO due to thermal degradation migrates and agglomerates because BaO reduces the agglomeration of the main catalyst CuO particles.

Effect of Particulate Matter and Ash Amount on Pressure Drop and Flow Uniformity of Diesel Particulate Filter Reduction System (입자상물질과 Ash양이 디젤매연여과장치 내의 배압 및 유동균일도에 미치는 영향)

  • Kim, YunJi;Han, DanBee;Seo, TaeWon;Oh, KwangChul;Baek, YoungSoon
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.22-29
    • /
    • 2020
  • Recently, as the fine dust is increased and the emission regulations of diesel engines have been tightened, interest in diesel soot filtration devices has rapidly increased. There is specifically a demand for the technological development of higher diesel exhaust gas after-treatment device efficiency. As part of this, many studies were conducted to increase exhaust gas treatment efficiency by improving the flow uniformity of the exhaust gas in the diesel particulate filter (DPF) and reducing the pressure drop between the inlet and the outlet of DPF. In this study, the effects of pressure drop by the flow rate and temperature of exhaust gas, DPF I/O ratio, Ash, and PM amount in diesel reduction device were simulated via a 12" diameter DPF and diesel oxidation catalyst (DOC) using ANSYS Fluent. As the flow rate and temperature decreased, the pressure drop decreased, whereas the PM amount affected the pressure drop more than the ash amount and the pressure drop was lower in anisotropic DPF than isotropic DPF. In the case of DPF flow uniformity, it was constant regardless of the various variables of DPF. In ESC and ETC conditions, the filtration efficiency for PM was similar regardless of anisotropic and isotropic DPF, but the filtration efficiency for PN (particle number) was higher in anisotropic DPF than isotropic DPF.

An Experimental Study on the Combustion and Emission Characteristics of Blends of GTL / Biodiesel in Diesel Engine (GTL/바이오디젤 혼합 연료의 연소 및 배기배출물 특성에 관한 실험적 연구)

  • Moon, Gun-Feel;Lee, Yong-Gyu;Choi, Kyo-Nam;Jeong, Dong-Soo
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.39-45
    • /
    • 2009
  • An experimental research with 2.0 liter 4-cylinder turbocharged diesel engine was carried out to investigate the combustion and emission characteristics for various alternative fuels. The conventional diesel fuel, neat GTL, blends of 80% of GTL and 20% of biodiesel derived from waste cooking oil are utilized without any modification of engine hardware and ECU data. For GTL and blends of GTL/biodiesel fuel, the ignition delay decreased at the same operating conditions, and overall combustion duration increased slightly. Also, the peak cylinder pressure increased for blends of GTL/biodiesel compared to diesel and GTL fuel. THC and CO emissions with blends of GTL/biodiesel compared to other fuels decreased for the low and middle load conditions. But NOx emission increased due to oxygen content in biodiesel. The number concentrations of PM are higher for blends of GTL/biodiesel than other test fuels in the nucleation mode, while it had an opposite tendency in the accumulation mode, which implies more reduction of PM for blends of GTL/biodiesel on the base of mass concentration.

The Spray Characteristics and Spray Behavior Characteristic in Exhaust Gas Flow of Urea Solution Injector (Urea 수용액 분사용 인젝터의 분무 특성과 배기관내 분무 거동 특성)

  • Oh, Jung-Mo;Han, Young-Deok;Kim, Ki-Bum;Lee, Ki-Hyung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.11
    • /
    • pp.999-1004
    • /
    • 2010
  • Recently, many technologies have been developed in order to satisfy stringent emission regulations. However, in the case of diesel engines, the stringent emission regulations with respect to NOx and PM have not yet been satisfied. A dramatic reduction in the NOx and PM emissions could be achieved by using after-treatment systems such as lean NOx trap (LNT) and urea-SCR systems. However, the high temperature in the exhaust pipe affects the spray behavior of the secondary injector, which is used for supplying the Urea-SCR. Because of this high temperature, it is difficult to achieve uniform distribution of the reducing agent in the manifold. In this paper, the characteristics of a urea-SCR injector used for injecting in the exhaust pipe are presented. The purpose of this study was to investigate the spray characteristics of the injector, such as the spray angle, injection quantity, and SMD. In addition, laser diagnostics and high-speed-camera images were used to analyze the injector spray characteristics and to present a distribution of reduction in the transparent manifold.

The Effect of Biodiesel Oxidation Deterioration on Emission (바이오디젤의 산화가 배출가스에 미치는 영향)

  • Song, Hoyoung;Lee, Minho;Kim, Kiho;Jung, Choongsub
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.220.2-220.2
    • /
    • 2011
  • Biodiesel and biodiesel blend fuel are receiving increasing attention as alternative fuels for diesel engines without substantial modifications. Biodiesel fuels and blending have been widely studied and applied in diesel engine because of biodiesel's lower sulfur, lower aromatic hydrocarbon and higher oxygen content. Biodiesels have the potential to be oxidized in different condition. It has reported that oxidation deterioration of biodiesel is different in the condition of storage and oxidation causes chemical property change of methyl esters. Sunlight intensity, temperature, material of container and contact surface with oxygen are key dominant factors accelerating oxidation deterioration. In this study, we chose temperature among key oxidation conditions and metal container filled with biodiesel was heated at about $110^{\circ}C$ for 10 days in order to accelerate oxidation deterioration. To better understand the effect of biodiesel blends on emission, steady state tests were conducted on a heavy duty diesel engine. The engine was fueled with Ultra Low Sulphur Diesel(ULSD), a blend of 10% and 20%(BD10, BD20) on volumetric basis, equipped with a common rail direct injection system and turbocharger, lives up to the requirements of EURO 3. The experimental results show that the blend fuel of normal biodiesel with BD10 and BD20 increased NOx. The result of PM was similar to diesel fuel on BD10, but the result of PM on BD20 was increased about 63% more than its of diesel. The blend fuel of Oxidation biodiesel with BD10 and BD20 increased NOx as the results of normal biodiesel. But PM was all increased on BD10 and BD20. Especially THC was extremely increased when test fuel contains biodiesel about 140% more than its of diesel. Through this study, we knew that oxidation deterioration of biodiesel affects emission of diesel engine.

  • PDF