• Title/Summary/Keyword: 등분포하중

Search Result 106, Processing Time 0.026 seconds

Behavior Characteristics of Reinforced Earth Wall using Fiber-Mixed Soil Backfill (뒤채움재료로 단섬유혼합토를 사용한 보강토옹벽의 거동특성)

  • Cho, Sam-Deok;Ahn, Tae-Bong;Oh, Se-Yong;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.3 no.1
    • /
    • pp.43-52
    • /
    • 2004
  • Laboratory model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls using fiber-mixed soil backfill with different surcharge loads and reinforcement spacing. The models were built in the box having dimensions, 100cm tall, 140cm long, and 100cm wide. The reinforcements used were geonet(tensile strength, 0.79t/m) and geogrid(tensile strength, 2.26t/m). Decomposed granite soil(ML) with or without polypropylene fiber was used backfill material. Strain gauges and LVDTs were installed on the retaining walls to measure the strain of the reinforcements and the displacements of the wall facings.

  • PDF

Modified Moment Gradient Correction Factor of Nonprismatic Beams (변단면보의 개선된 모멘트 구배 수정계수)

  • Park, Jong Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.191-201
    • /
    • 2006
  • New design equations for calculating the lateral-torsional buck ling moment resistances of stepped I-section beams with/without continuous lateral top-flange bracing subjected to a point load, a series of point loads, and a uniformly distributed load, are suggested based on the results of elastic finite-element analyses. The new equations presented in this study are compared with the current moment gradient modifiers presented by other researchers and specifications. Although the study paper presents mainly stepped-beam cases subjected to a point load and a uniformly distributed load. The proposed equations include the length-to-height ratio effects for stepped beams with continuous lateral top-flange bracing. The new moment gradient correction factors could be easily used to calculate the lateral-torsional buckling moment resistance of stepped I-beams.

Analysis of Orthotropic Body Under Partial-Uniform Shear Load (부분(部分) 등분포(等分布) 전단하중(剪斷荷重)을 받는 이방성(異方性) 구조체(構造體)의 해석(解析))

  • Chang, Suk Yoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.1
    • /
    • pp.1-10
    • /
    • 1984
  • This dissertation presents an exact solution for the shearing and normal stresses of an orthotropic plane body loaded by a pairtial-uniform shear load. The solution satisfies the equilibrium and compatibility equations concurrently. An Airy stress function is introduced to solve the problem related to an orthotropic half-infinite plane under a partial-uniform shear load. All the equations for orthotropy must be degenerated into the expressions for isotropy when orthotropic constants are replaced by isotropic ones. The author has evaluated all the equations of orthotropy and succeeded in obtaining exactly identical expressions to the equations of isotropy which were derived independently by means of L'hospital's rule. The analytical results of, isotropy ate compared with the simple results of other investigator. Since a concentrated shear load is a particular case of partial-uniform shear load, all the equations of partial-uniform shear load case are degenerated into the expressions for concentrated load case of isotropy and orthotropy. The formal solution is expressed in terms of closed form. The numerical results for orthotropy are evaluated for two kinds and two different orientations of the grain of wood. The type of wood considered are three-layered plywood and laminated delta wood. The distribution of normal and shearing stresses are shown in figures. It is noted that the distribution of stresses of orthctropic materials dependson the type of materials and orientations of the grain.

  • PDF

Determination of the Critical Buckling Loads of Shallow Arches Using Nonlinear Analysis of Motion (비선형 운동해석에 의한 낮은 아치의 동적 임계좌굴하중의 결정)

  • Kim, Yun Tae;Huh, Taik Nyung;Kim, Moon Kyum;Hwang, Hak Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.12 no.2
    • /
    • pp.43-54
    • /
    • 1992
  • For shallow arches with large dynamic loading, linear analysis is no longer considered as practical and accurate. In this study, a method is presented for the dynamic analysis of shallow arches in which geometric nonlinearity must be considered. A program is developed for the analysis of the nonlinear dynamic behavior and for evaluation of critical buckling loads of shallow arches. Geometric nonlinearity is modeled using Lagrangian description of the motion. The finite element analysis procedure is used to solve the dynamic equation of motion and Newmark method is adopted in the approximation of time integration. A shallow arch subject to radial step loads is analyzed. The results are compared with those from other researches to verify the developed program. The behavior of arches is analyzed using the non-dimensional time, load, and shape parameters. It is shown that geometric nonlinearity should be considered in the analysis of shallow arches and probability of buckling failure is getting higher as arches are getting shallower. It is confirmed that arches with the same shape parameter have the same deflection ratio at the same time parameter when arches are loaded with the same parametric load. In addition, it is proved that buckling of arches with the same shape parameter occurs at the same load parameter. Circular arches, which are under a single or uniform normal load, are analyzed for comparison. A parabolic arch with radial step load is also analyzed. It is verified that the developed program is applicable for those problems.

  • PDF

An Experimental Study on the Fire Behavior of Two-way Void Slab under Standard Fire with Loading condition (표준화재 재하조건 이방향 중공슬래브의 화재거동에 관한 실험적 연구)

  • Kim, Hyung-Jun;Yeo, In-Hwan;Kim, Heung-Youl;Cho, Kyung-Suk;Kim, Jeong-Hyun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2010.10a
    • /
    • pp.17-20
    • /
    • 2010
  • 기존의 무량판 구조와 동일한 이방향 슬래브구조인 TVS(two-way void slab)공법은 구조적 하중지지 성능이 불필요한 슬래브 단면상의 중앙부 콘크리트를 제거하여 슬래브의 자중을 줄이고 무량판 구조의 단점을 보완하여 장점을 극대화시킨 구조형식이다. 그러나 이러한 장점을 보유한 공법을 현장적용하기 위해서는 내화성능평가를 통해 화재안전성을 확보하여야 하므로, 이에 대한 화재 실증실험을 수행하여 현장적용을 위한 최소 요구내화 시간에 따른 내화성능 확보방안의 도출이 제시되어야 한다. 이에 본 연구에서는 TVS공법의 실제 스팬길이로 슬래브 피복두께에 따른 화재거동 영향성 분석을 위하여 화재실험을 수행하였다. 하중조건은 고정하중과 적재하중을 고려하여 실험체에 등분포 조건으로 사전재하하였으며, 표준화재조건으로 재하가열 실험을 수행하였다. 슬래브의 화재가열 노출면으로부터의 깊이별 온도변화와 처짐변형 특성을 측정하였으며, KS F 2257-1 평가기준에 의거하여 슬래브의 내화성능을 평가하였다. 실험결과 피복두께 50 mm를 확보할 경우, EPS중공체로 제작한 실험체의 경우 약 2시간정도의 내화성능을 확보할 수 있는 것으로 나타났다.

  • PDF

A Shape Finding of the Cable Structures by Flexibility Iteration Procedure and Nonlinear FEM (유연성 반복과정과 비선형유한요소법에 의한 케이블 구조물의 형태탐색)

  • 황보석;서삼열;진권태
    • Computational Structural Engineering
    • /
    • v.3 no.3
    • /
    • pp.133-140
    • /
    • 1990
  • Analysis of cable structures is complex because their force - displacement relationships are highly nonlinear and also because large deformations introduce geometric nonlinearity. Therefore, we must take account their geometric nonlinearity in the analysis and find the equilibrated shape of cable structures. In this paper, to slove these problems, numerical procedures involving geometrical nonlinearity are introduced. They are applicable to general cable net, flexible transmission lines and suspended cable roof. These procedures are divided into two parts; one is to obtain the equilibrated shapes and stresses of the cable structures with uniform load by flexibility iteration method, the other is to analyse the equilibrated structures subjected to nodal external forces by nonlinear finite element method.

  • PDF

Analysis of Bending Wire Mesh (와이어메쉬 굴곡배치 타당성분석)

  • Kim, Chun-Ho;Jung, Dae-Suk
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.6
    • /
    • pp.169-174
    • /
    • 2009
  • We conducted structural analysis to investigate disadvantage of wire-mesh arranged at the plane and to develop three-dimensionally bent U-type wire-mesh. In all case that distributed loading at the whole top slab and the half top slab, and the wire mesh was bent $45^{\circ}$, flexura tensile stress was the fewest in both positive moment and negative moment, and the wire mesh was bent $45^{\circ}$ in crossway the shear stresss was the fewest. Therefore, by arranging wire-mesh with $45^{\circ}$ more bent than plane, flexura tensile stress, shear stress, displacement will be reduced and structural function will be improved.

An Experimental Study on the Buckling & Behaviour of Single-Layer Latticed Dome (단층 래티스 돔의 좌굴 및 거동에 관한 실험적 연구)

  • Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.6 no.4 s.22
    • /
    • pp.35-44
    • /
    • 2006
  • The form-resistant Systems like a dome and shell are used more widely than post-beam structure system in large space structure. Single layer latticed dome system, one of the form-resistant system, has great merits in manufacturing and constructing but the failure mechanism is not clarified yet. The purpose of this paper is to find out the buckling characteristics of single-layer latticed domes with square network by using the experimental method. Major test parameters are the stiffness of lattice member and space of square lattice. The specimens are applied uniform loading of snow type.

  • PDF

Characteristic Behavior of In-plane Buckling of Circular Arch Ribs Subjected to Partial Distributed Loading (부분 등분포 하중을 받는 원형아치 리브의 면내 좌굴 거동특성)

  • Kim, Sung-Hoon;Moon, Ji-Ho;Yoon, Ki-Yong;Lee, Hak-Eun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.5 no.3 s.18
    • /
    • pp.57-65
    • /
    • 2005
  • When arch ribs are subjected unsymmetrical load, buckling strength Is lower than strength of arch ribs subjected symmetrical load. However, A few study about the buckling strength of arch ribs subjected unsymmetrical load is performed compare with study about arch ribs subjected symmetrical load. Several researchers(Deutch : 1940, Chang : 1973, Harrison : 1982) studied about arch ribs subjected unsymmetrical load and they found that unsymmetrical loading reduces the critical buckling load. But, their results are limited parabolic arch ribs. This paper focuses on circular arch ribs subjected to unsymmetrical loading. The result shows that the ratio of live and dead load length to cause smallest critical buckling load of arch ribs is $0.6{\sim}0.7$ under geometric nonlinear condition and $0.5{\sim}0.6$ under both material and geometrical nonlinear conditions.

The Earth Pressure on the Effect of Surcharge Load at the Narrowly Backfilled Soil (좁은 공간 되메움 지반에서의 상재하 영향에 의한 토압)

  • 문창열;이종규
    • Geotechnical Engineering
    • /
    • v.13 no.6
    • /
    • pp.165-180
    • /
    • 1997
  • The structure such as underground external walls of buildings, conduit and box culvert supports the surcharge loads (point, strip and line loads) . The vertical and horizontal stresses in a soil mass depend on the backfill width and wall friction, etc. The investigations described in this paper is designed to identify the magnitude and the distributions of the lateral and vertical pressure which is occurred by the narrowly backfilled soil in an open cut by the surcharge loads. For these purposes, model tests were performed for various width of backfill in a model test box by considering the wall friction using carbon rods. The results of test were compared with the theories of Weissenbach and VS Army Code and also with the results of the numerical analysis using finite difference method which introduces Mohr-Coulomb failure hypothesis.

  • PDF