• Title/Summary/Keyword: 등방성 지수

Search Result 16, Processing Time 0.023 seconds

Hack's Law and the Geometric Properties of Catchment Plan-form (Hack의 법칙과 집수평면의 기하학적 특성)

  • Kim, Joo-Cheol;Lee, Sang-Jin
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.691-702
    • /
    • 2009
  • This study makes a systematic approach to Hack's law considering self-affinity and self-similarity of natural basins as well as the elongation of corresponding catchment-plan forms. Catchment-plan forms extracted from DEM appear to be the population come from the interactions of 2 hypotheses on Hack's law. It is judged that the elongation measures based on inertia moments are more intuitive than the ones based on main channel lengths. The exponent of Hack's law, h, seems to be similar to the result of Gray's study (1961). However Hurst exponent, H, being 0.96 imply that catchment-plan forms considered in this study have isotropic increasing properties with scale. From this point of view it is inferred that the shapes of the basins in this study would be more affected from self-similarity of main channel lengths than self-affinity of catchment-plan forms.

Implementation of a New Parallel Spherical 3-Degree-of-Freedom Mechanism With Excellent Kinematic Characteristics (우수한 기구학 특성을 가지는 새로운 병렬형 구형 3자유도 메커니즘의 구현)

  • 이석희;김희국;오세민;이병주
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2004.10a
    • /
    • pp.299-303
    • /
    • 2004
  • In our pervious paper, a new parallel-type spherical 3-degree-of-freedom mechanism consisting of a two-degree-of-freedom parallel module and a serial RRR subchain was proposed[1]. In this paper, its improved version is suggested and implemented. Differently from the previous 3-dof spherical mechanism, gear chains are incorporated into the current version of the mechanism to drive the distal revolute joint of the serial subchain from the base of the mechanism and in fact, the modification significantly improves kinematic characteristics of the mechanism within its workspace. Firstly, after a brief description on its structure, the closed-form solutions of both the forward and the reverse position analysis are derived. Secondly, the first-order kinematic model of the mechanism for the inputs which are assumed to be located at the base is derived. Thirdly, through the simulations of the kinematic analysis via. kinematic isotropic index, it is confirmed that the mechanism has much more improved isotropic properties throughout the workspace of the mechanism than the previous mechanism in [1]. Lastly, the proposed mechanism is implemented to verify the results from this analysis.

  • PDF

The anisotropic of threshold energy of impact ionization for energy band structure on GaAs (GaAs 에너지밴드구조에 따른 임팩트이온화의 문턱에너지 이방성)

  • 정학기;고석웅;이종인
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 1999.05a
    • /
    • pp.389-393
    • /
    • 1999
  • The exact model of impact ionization events in which has influence on device efficiency, is to be necessary element for device simulation. Recently, a modified Keldysh formula with two set of power exponent of 7.8 and 5.6 is used to simulate carrier transport. This model is, however, not suitable as impact ionization model in low energy range since this ignore direction dependent properties of impact ionization. The impact ionization rate is highly anisotropic at low energy, while it becomes isotropic at higher energy range. Note that impact ionization events frequently occur in high energy range. For calculating impart ionization rate, we use full energy band structure derived from Fermi's golden rule and empirical pseudopotential method. We compare with calculated and experimental value, and investigate direction dependent conduction energy band structure along the direction of <100>, <110> and <111>. We know that the threshold energy of impact ionization is anisotropic and impact ionization rate is very deviated from modified Keldish formula, in relatively low energy range.

  • PDF

Response Variability of Laminated Composite Plates with Random Elastic Modulus (탄성계수의 불확실성에 의한 복합적층판 구조의 응답변화도)

  • Noh, Hyuk-Chun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.4
    • /
    • pp.335-345
    • /
    • 2008
  • In this study, we suggest a stochastic finite element scheme for the probabilistic analysis of the composite laminated plates, which have been applied to variety of mechanical structures due to their high strength to weight ratios. The applied concept in the formulation is the weighted integral method, which has been shown to give the most accurate results among others. We take into account the elastic modulus and in-plane shear modulus as random. For individual random parameters, independent stochastic field functions are assumed, and the effect of these random parameters on the response are estimated based on the exponentially varying auto- and cross-correlation functions. Based on example analyses, we suggest that composite plates show a less coefficient of variation than plates of isotropic and orthotropic materials. For the validation of the proposed scheme, Monte Carlo analysis is also performed, and the results are compared with each other.

Morphology and Properties of Microcellular foams by High Infernal Phase Emulsion Polymerization: Effect of Emulsion Compositions (HIPE 중합에 의한 미세기공 발포체의 모폴로지 및 물성: 유화계 조성의 영향)

  • 정한균;지수진;이성재
    • Polymer(Korea)
    • /
    • v.26 no.6
    • /
    • pp.759-766
    • /
    • 2002
  • Regular, spherical and isotropic open-microcellular foams having low density were prepared by the high internal phase emulsion (HIPE) polymerization mainly composed of styrene monomer and water The effects of Polymerization conditions. such as the content of water, divinylbenzene as a crosslinking agent and dodecane as a chain transfer agent, were investigated based on the tell size and foam properties. The microstructural morphology was observed using scanning electron microscopy (SEM) and the compression modulus of the foam was evaluated using compression test. The dropwise feeding of the aqueous phase into the oil phase was more effective than the batch feeding in producing the uniform and stable foam. Agitation speed and surfactant strongly influenced on the cell size and the window size between water droplets. Introduction of chain transfer agent increased the cell size, whereas it decreased the window size. Compression modulus increased with the crosslinking agent, but decreased with the chain transfer agent.

Utilization of Finite Element Analysis in Design and Performance Evaluation of CFRP Bicycle Frames (유한요소해석을 이용한 CFRP 자전거 프레임의 설계 및 성능 평가)

  • Lee, Yong-Sung;Shin, Ki-Hoon;Cheong, Seong-Kyun;Choi, Ung-Jae;Kim, Young-Keun;Park, Kyung-Rea;Kim, Hong Seok
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.1
    • /
    • pp.121-127
    • /
    • 2013
  • With the continuing demand for lightweight bicycles, carbon fiber composite materials have been widely used in manufacturing bicycle frames and components. Unlike general isotropic materials, the structural characteristics of composite materials are strongly influenced by the staking directions and sequences of composite laminates. Thus, to verify the design process of bicycles manufactured using composites, structural analysis is considered essential. In this study, a carbon-fiber-reinforced plastic (CFRP) bicycle frame was designed and its structural behavior was investigated using finite element analysis (FEA). By measuring the failure indices of the fiber and matrix under various stacking sequences and loading conditions, the effect of the stacking condition of composite laminates on the strength of the bicycle structure was examined. In addition, the structural safety of the bicycle frame can be enhanced by reinforcing weak regions prone to failure using additional composite laminates.