• Title/Summary/Keyword: 등가 병진스프링

Search Result 3, Processing Time 0.02 seconds

A Study on the Joint Stiffness of Automotive Structural Model (차체구조 모형의 조인트 해석에 관한 연구)

  • Mun, Yong-Mo;Jee, Tae-Han;Park, Young-Pil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.5
    • /
    • pp.1445-1457
    • /
    • 1996
  • In building a finite element model of as automotive structure, the pillars and rockers are generally modeled as beam elemnts. The finite elemtns modeling using beam is faster and more efficient than that using shell elemetns. A joint is defined as theintersectio region of beam elemts and generally modeled with coupled rotational springs. In this study, hoint modeling technique is presented. First, the definitions of and anlaysis hypothesis for the joint are defined. Second the evaluation method of the joint stiffness from the static test is proposed. This method is simpler than existing evaluaiton methods. Third, the sensitivity analysis method and updating algorithm forjoint stiffness are presented. To verify these melthods, the finite element results of structural models with rigid joints and rotational spring joints are compared with experimental results.

Vibration Analysis of a BEBTS(Built-in Eccentric Bearing-Torsional Spring) Type ABTU(Automatic Belt Tension Unit) (편심 베어링 - 비틀림 스프링 내장형 자동벨트 긴장장치의 진동해석)

  • Choe, Yeong-Hyu;An, Yeong-Deok;Jeong, Won-Ji
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.95-100
    • /
    • 2002
  • Built-in Eccentric Bearing-Torsional Spring (BEBTS) type Automatic Belt Tension Unit (ABTU) is one of typical belt tension units. The BEBTS type ABTU system frequently experiences torsional vibration about its pivot due to the variation of belt tension. However, it is very difficult to analyze the rotational (or torsional) vibration of the ABTU because the exciting moment varies according to the change of belt tension. To get over this difficulty, in this paper. the ABTU was simplified as 1-DOF translational motion model in the tangential direction. Its equation of motion was derived and solved. The time history and frequency responses were computed and examined for three of BEBTS type ABTUs which are made by different manufacturers but the tame kind.

Dynamic Modeling and Simulation of a Towing Rope using Multiple Finite Element Method (다물체 요소이론을 이용한 예인줄 동역학의 모델링 및 시뮬레이션)

  • Yoon, Hyeon-Kyu;Lee, Hong-Seok;Park, Jong-Kyu;Kim, Yeon-Gyu
    • Journal of Navigation and Port Research
    • /
    • v.36 no.5
    • /
    • pp.339-347
    • /
    • 2012
  • After towing rope connecting a barge to a tug was subdivided into multiple finite elements, then those dynamic models was established using Newton's second law and considering the external force and moment such as tension, drag, Coriolis force, gravity, buoyancy, and impact due to free surface acting on each element. While the previous research on the model of towing rope considered only translation, five-degree-of-freedom equations of motion except roll based on the body-fixed frame were established in this paper. All elements are connected by a spring and a damper, and the stiffness of the spring was set as the equivalent value of the real rope. In order to confirm the established multiple finite element model, various scenarios such as freely falling of towing rope in the air and above the free surface, accelerating of a tug which tows a barge connected by towing rope, and sinusoidal moving of a tug were set up and simulated. As the results, the trajectories of the tug, the barge, and the towing rope showed good tendencies to the ones of real expected situations.