• Title/Summary/Keyword: 등가 물성

Search Result 127, Processing Time 0.023 seconds

Accuracy of a direct estimation method for equivalent material properties of 1-3 piezocomposites (1-3형 압전복합재료 등가물성 직접 추출 기법의 정확도 분석)

  • Eunghwy Noh;Donghyeon Kim;Hyeongmin Mun;Woosuk Chang;Hongwoo Yoon;Seonghun Pyo;Kyungseop Kim;Yo-Han Cho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.5
    • /
    • pp.377-387
    • /
    • 2023
  • This paper presents accuracy of a method that directly estimates equivalent properties of a 1-3 piezocomposite for modeling it into the single phase homogeneous piezomaterial. This direct estimation method finds individual components of a material property matrix based on the piezoelectric constitutive equations, which represent mechanical and electrical behaviors and their couplings. Equivalent properties on a single 1-3 piezocomposite hydrophone are derived, and their accuracy depending on pairing of the constitutive equations is investigated by comparing them with finite element analysis for the whole domain. The accuracy is related to elastic characteristics of a matrix polymer, and the error is analyzed so that some guidelines for correct estimation are suggested. Fidelity of estimated properties and equivalent modeling is shown in a stave scale including hydrophones and surrounding acoustic structures as well, and reduced computational cost is verified.

Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method (공진법을 이용한 1-3형 압전복합체의 단일상 등가물성 도출)

  • Kim, Jin-Wook;Pyo, Sung-Hun;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.7
    • /
    • pp.368-376
    • /
    • 2011
  • Piezoelectric composites have been widely used in broadband acoustic transducers because of their lower acoustic impedance and higher electro-mechanical coupling factor. However, their complex structure has placed many limitations on the design of various transducers. This paper suggests the methodology to substitute the 1-3 piezocomposites by a single-phased material that has properties equivalent to those of the piezocomposites. The resonant method and finite element analysis (FEA) are used to derive the equivalent properties that can accurately depict resonant properties at various vibration modes of the piezocomposites. Validity of the suggested method is confirmed by comparing frequency characteristics of fabricated 1-3 piezocomposite specimens and FEA models. Further, accuracy of the derived material constants is checked by applying the equivalent properties to FEA models of the single phase material for various resonant modes.

Fabrication of a 2-2 Mode Piezocomposite and Derivation of its Equivalent Properties (2-2형 압전복합체 제작 및 등가 물성 도출)

  • Shin, Ho-Seop;Roh, Yong-Rae
    • The Journal of the Acoustical Society of Korea
    • /
    • v.30 no.8
    • /
    • pp.436-445
    • /
    • 2011
  • In this paper, equivalent properties of 2-2 mode piezocomposites were studied. Variation of the properties of 2-2 mode piezocomposites was analyzed by the finite element method, and the result was compared with experimental measurement data to confirm the validity of the analysis. The equivalent properties of a single phase material to represent the piezocomposite composed of PZT-5H and polymer were derived by the asymptotic averaging method. Accuracy of the derived equivalent properties was enhanced by minimizing the discrepancy between the impedance spectra of full 2-2 piezocomposite and equivalent single phase material resonators of various vibration modes by the least square method. The equivalent properties of 2-2 piezocomposites derived in this study can be utilized to the design of diverse acoustic sensors.

The DFN-DEM Approach Applied to Investigate the Effects of Stress on Mechanical and Hydraulic Rock Mass Properties at Forsmark, Sweden (암반균열망-개별요소법 수치실험을 통해 살펴본 스웨덴 포쉬마크지역 암반의 역학적 및 수리적 물성에 초기응력이 미치는 영향)

  • Min, K.B.;Stephansson, O.
    • Tunnel and Underground Space
    • /
    • v.21 no.2
    • /
    • pp.117-127
    • /
    • 2011
  • The purpose of this study is to demonstrate the effect of in-situ rock stresses on the deformability and permeability of fractured rocks. Geological data were taken from the site investigation at Forsmark, Sweden, conducted by Swedish Nuclear Fuel and Waste Man-agement Company (SKB). A set of numerical experiments was conducted to determine the equivalent mechanical properties (essentially, elastic moduli and Poisson's ratio) and permeability, using a Discrete Fracture Network-Discrete Element Method (DFN-DEM) approach. The results show that both mechanical properties and permeability are highly dependent on stress because of the hyperbolic nature of the stiffness of fractures, different closure behavior of fractures, and change of fluid pathways caused by deformation. This study shows that proper characterization and consideration of in-situ stress are important not only for boundary conditions of a selected site but also for the understanding of the mechanical and hydraulic behavior of fractured rocks.

A Study on Prediction of Effective Material Properties of Composites with Fillers of Different Sizes and Arrangements (강화재의 크기 및 배치에 따른 복합재의 등가 물성치 예측에 대한 연구)

  • Lee, J. K.;Kim, J. G.
    • Composites Research
    • /
    • v.18 no.5
    • /
    • pp.21-26
    • /
    • 2005
  • The validity of Eshelby-type model with Mori-Tanaka's mean field theory to predict the effective material properties of composites have been investigated in terms of filler size and its arrangement. The 2-dimensional plate composites including constant volume fraction of fillers are used as the model composite for the analytical studies, where the filler size and its arrangement are considered as parameters. The exact effective material properties of the composites are computed by finite element analysis(FEA), which are compared with effective material properties from the Eshelby-type model. Although the fillers are periodically or randomly arranged, the average Young's moduli by Eshelby-type model and FEA are in good agreement, specially for the ratio of specimen size to filler size being smaller than 0.03. However, Poisson's ratio of the composite by the Eshelby-type model is overestimated by $20\%$.

Determination of equivalent elastic modulus of shotcrete-tetragonal lattice girder composite (사변형 격자지보재-숏크리트 합성부재의 등가물성 결정 기법)

  • Kang, Kyung-Nam;Song, Ki-Il;Kim, Sun Gil;Kim, Kyoung Chul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.22 no.2
    • /
    • pp.145-154
    • /
    • 2020
  • Steel set is a structure that stabilize the NATM tunnel until the installation of shotcrete, and it is combined after the shotcrete is installed to improve stability. In this study, determination approach for the equivalent elastic modulus of shotcrete-lattice girder composite is newly suggested for tunneling simulation. Also, a method was presented to calibrate the equivalent elastic modulus through the comparison of the full 3D model and equivalent model. When the conventional equivalent elastic modulus is used for shotcrete-lattice girder composite, the flexural strength of equivalent model is 130% smaller than that of full 3D model. Equivalent elastic modulus is adjusted considering the error of flexural strength. It is found that the error of flexural strength obtained from adjusted equivalent model using adjusted equivalent elastic modulus is reduced less than 1%.

Crimp Angle Dependence of Effective Properties for 3-D Weave Composite (굴곡각에 따른 3차원 평직 복합재료의 등가 물성치 예측)

  • Choi, Yun-Sun;Woo, Kyeongsik
    • Composites Research
    • /
    • v.29 no.1
    • /
    • pp.33-39
    • /
    • 2016
  • In this study, geometric modeling and finite element analysis of 3-dimensional plain weave composite unit cell consisting of 3 interlaced fiber tows and resin pocket were performed to predict effective properties. First, tow properties were obtained from micro-mechanics finite element unit cell analysis, which were then used in the meso-mechanics analysis. The effective properties were obtained from a series of unit cell analyses simulating uniaxial tensile and shear tests. Analysis results were compared to the analysis and experimental results in the literature. Various crimp angles were considered and the effect on the effective properties was investigated. Initial failure strengths and failure sequence were also examined.

Structural analysis of a thick composite rotor hub system by using equivalent properties (등가 물성을 이용한 두꺼운 복합재 로터 허브 시스템의 구조 해석)

  • ;Yanti Rachmadini
    • Composites Research
    • /
    • v.16 no.5
    • /
    • pp.7-14
    • /
    • 2003
  • Modeling of thick composite structures for finite element analysis is relatively complicated. 2-D plane elements may cause inaccurate result since the plane stress condition cannot be applicable in these structures. Therefore a 3-D modeling should be used. However, the difficulty to model all the layers with different material properties and ply orientation arise in this case. In this paper, an equivalent modeling is proposed and numerically tested for analysis of thick composite structures. By grouping layers with same material and ply orientation, number of elements through the thickness is remarkably reduced and still the result is close enough to the one from a detail finite element model. MSC/NASTRAN and PATRAN are used for the analysis. The proposed modeling technique has been applied for analysis of composite rotor hub system designed by Korea Aerospace Research Institute(KARI). Using the proposed equivalent modeling technique, we could conduct stress analysis for the hub system and check the safety factor of each part.

Comparison of Two- and Three-dimensional Approaches for the Numerical Determination of Equivalent Mechanical Properties of Fractured Rock Masses (균열암반의 역학적 등가물성의 수치해석적 결정을 위한 2차원 및 3차원 해석의 비교)

  • Min, Ki-Bok;Thoraval, Alain
    • Tunnel and Underground Space
    • /
    • v.22 no.2
    • /
    • pp.93-105
    • /
    • 2012
  • This paper compares the two- and three-dimensional (2D and 3D) approaches for the numerical determination of the equivalent mechanical properties of fractured rock masses. Both orthogonally-fractured model and discrete fracture networks (DFN) were used for the geometry and 2D models were cut in various directions from 3D model to compare their mechanical properties. Geological data were loosely based on the data available from Sellafield, UK. Analytical method based on compliance tensor transformation was used for investigation in orthogonally fractured rock and numerical experiments were conducted on fractured rock mass with DFN geometry. It is shown that 2D approach always overestimates the elastic modulus of fractured rock masses by a factor of up to around two because fractures are assumed to be perpendicular to the model plane in 2D problems. Poisson ratios tend to have larger values in 2D analysis while there is opposite trend in some sections. The study quantitatively demonstrates the limitation of the 2D approach that uses the simplified model from true 3D geometry.

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).