DOI QR코드

DOI QR Code

Derivation of Single Phase Material Properties Equivalent to 1-3 Piezoelectric Composites by the Resonant Method

공진법을 이용한 1-3형 압전복합체의 단일상 등가물성 도출

  • Received : 2011.07.03
  • Accepted : 2011.09.22
  • Published : 2011.10.31

Abstract

Piezoelectric composites have been widely used in broadband acoustic transducers because of their lower acoustic impedance and higher electro-mechanical coupling factor. However, their complex structure has placed many limitations on the design of various transducers. This paper suggests the methodology to substitute the 1-3 piezocomposites by a single-phased material that has properties equivalent to those of the piezocomposites. The resonant method and finite element analysis (FEA) are used to derive the equivalent properties that can accurately depict resonant properties at various vibration modes of the piezocomposites. Validity of the suggested method is confirmed by comparing frequency characteristics of fabricated 1-3 piezocomposite specimens and FEA models. Further, accuracy of the derived material constants is checked by applying the equivalent properties to FEA models of the single phase material for various resonant modes.

압전복합체는 낮은 음향 임피던스와 높은 전기-기계 결합계수를 가지는 장점으로 인해 광대역 음향 트랜스듀서의 개발에 널리 활용되고 있으나, 구조의 복잡성으로 인해 이를 이용한 각종 트랜스듀서의 설계에 많은 제약이 있어왔다. 본 논문에서는 1-3형 압전복합체의 등가물성을 도출하여, 압전복합체와 동일한 특성을 가지는 균질한 단일 상의 물질로 대체하는 방법을 제안하였다. 압전복합체의 다양한 진동모드에서의 공진특성을 정확히 나타낼 수 있는 등가물성 도출을 위해 공진법과 유한 요소 해석법을 이용하였다. 제작한 1-3형 압전복합체 시편과 유한요소해석 모델의 주파수 특성을 비교하여 본 논문의 등가물성도출 방법의 타당성을 검증하였으며, 등가물성을 각 공진 모드별 단일상의 유한요소 해석 모델들에 적용하여 도출한 물성값의 정확성을 분석하였다.

Keywords

References

  1. 한교훈, 노용래, "1-3형 압전복합체를 이용한 초음파 탐촉자 설계 및 시작품 제작," 한국음향학회지, 17권, 8호, 48-57쪽, 1998.
  2. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound, Springer, New york, Chap. 3 and 4, 2007.
  3. W. A. Smith and B. A. Auld, "Modeling 1-3 composite piezoelectrics: thickness-mode oscillations," IEEE Trans. U.F.F.C, vol. 38, no. 1, pp. 40-47, 1991.
  4. H. L. W. Chan and J. Unsworth, "Simple model for piezoelectric ceramic/polymer 1-3 composites used in ultrasonic transducer applications," IEEE Trans. U.F.F.C, vol. 36, no. 4, pp. 434-441, 1989.
  5. T. R. Gururaja, W. A. Schulze, L. E. Cross, R. E. Newnham, B. A. Auld, and Y. J. Wang, "Piezoelectric composite materials for ultrasonic transducer applications. part I: resonant modes of vibration of PZT rod-polymer composites," IEEE Trans. Sonics Ultrason., vol. SU-32, no. 4, pp. 481-498, 1985.
  6. E. Lenglet, "Numerical homogenization techniques applied to piezoelectric composites," J. Acoust. Soc. Am, vol. 113, no. 2, pp. 826-833, 2003. https://doi.org/10.1121/1.1537710
  7. H. Taunaumang, I. L. Guy, and H. L. W. Chan, "Electromechanical properties of 1-3 piezoelectric ceramic/piezoelectric polymer composites," J. Appl. Phys. vol. 76, no. 1, pp. 484-489. 1994. https://doi.org/10.1063/1.357099
  8. G. M. Odegard, "Constitutive modeling of piezoelectric polymer composites," Acta Materialia, vol. 52, no. 18, pp. 5315-5330, 2004. https://doi.org/10.1016/j.actamat.2004.07.037
  9. G. M. Odegard, T. C. Clancy and T. S. Gates, "Modeling of the mechanical properties of nanoparticle/polymer composites," Polymer, Vol. 46, no. 2, pp. 553-562, 2005. https://doi.org/10.1016/j.polymer.2004.11.022
  10. S. Mercier and A. Molinari, "Homogenization of elastic-viscoplastic heterogeneous materials: self-consistent and Mori-Tanaka schemes," International Journal of Plasticity, vol. 25, no. 6, pp. 1024-1048, 2009. https://doi.org/10.1016/j.ijplas.2008.08.006
  11. L. Li, L. Wang, L. Qin and T. Lv, "The theoretical model of 1-3-2 piezocomposites," IEEE Trans. U.F.F.C, vol. 56, no. 7, pp. 1476-1482, 2009.
  12. R. E. Newnham, Properties of Materials: Anisotropy, Symmetry, Structure, Oxford, New york, 2005.
  13. O. B. Wilson, Introduction to Theory and Design of Sonar Transducers, Peninsulr Publishing, Los Altos, Chap. 2 and 6, 1988.
  14. IEEE Standard on Piezoelectricity, The Institute of Electrical and Electronics Engineers, New york, 1988.
  15. T. Ikeda, Fundamentals of Piezoelectricity, Oxford, New york, 1996.
  16. D. J. Powell, G. L. Wojcik, C. S. Desilets, T. R. Gururaja, K. Guggenberger, S. Sherrrit, and B. K. Mukherjee, "Incremental model-build-test validation exercise for a 1-D biomedical ultrasonic imaging array," IEEE Ultrason. Sym. pp. 1669-1674, 1997.
  17. T. Lahmer, M. Kaltenbacher, B. Kaltenbacher, R. Lerch and E. Leder, "FEM-based determination of real and complex elastic, dielectric, and peizoelectric modulli in piezoceramic materials," IEEE Trans. U.F.F.C., vol. 55, no. 2, pp. 465-475, 2008.
  18. 이상한, 노용래, "고상단결정법으로 성장시킨 0.68Pb (Mg1/3Nb2/3) O3-0.32PbTiO3 압전단결정의 물성평가," 한국음향학회지, 23권, 2호, pp. 103-108, 2004.
  19. B. Jaffe, W. C. Cook and H. Jaffe, Piezoelectric Ceramics, Academic press, London, 1971.
  20. A. H. Meitzler, H. M. O'bryan, Jr., and H. F. Tiersten, "Definition and measurement of radial mode coupling factors in piezoelectric ceramic materials with large variations in Poisson's ratio," IEEE Trans. Sonics Ultrason., vol. SU-20, no. 3, pp. 233-239, 1973.

Cited by

  1. Study on the Wideband Tonpilz Transducer with a Cavity-Type Head Mass vol.33, pp.2, 2014, https://doi.org/10.7776/ASK.2014.33.2.094