DOI QR코드

DOI QR Code

Accuracy of a direct estimation method for equivalent material properties of 1-3 piezocomposites

1-3형 압전복합재료 등가물성 직접 추출 기법의 정확도 분석

  • Received : 2023.06.22
  • Accepted : 2023.08.03
  • Published : 2023.09.30

Abstract

This paper presents accuracy of a method that directly estimates equivalent properties of a 1-3 piezocomposite for modeling it into the single phase homogeneous piezomaterial. This direct estimation method finds individual components of a material property matrix based on the piezoelectric constitutive equations, which represent mechanical and electrical behaviors and their couplings. Equivalent properties on a single 1-3 piezocomposite hydrophone are derived, and their accuracy depending on pairing of the constitutive equations is investigated by comparing them with finite element analysis for the whole domain. The accuracy is related to elastic characteristics of a matrix polymer, and the error is analyzed so that some guidelines for correct estimation are suggested. Fidelity of estimated properties and equivalent modeling is shown in a stave scale including hydrophones and surrounding acoustic structures as well, and reduced computational cost is verified.

본 논문에서는 1-3형 압전복합재료를 단일상의 균질 압전매질로 모델링하기 위해 필요한 등가의 물성을 유한요소 해석으로 직접 추출하는 기법의 정확도를 다룬다. 직접 추출 기법은 압전재료의 전기적, 기계적 거동과 상호 간 커플링을 기술하는 구성방정식을 기반으로 물성 행렬의 개별 성분들을 직접적으로 산출하는 방법이다. 직접 추출에 사용되는 두 가지 구성방정식 조합 간의 정확도를 비교하기 위하여 단일 1-3형 압전복합재료 하이드로폰을 대상으로 등가물성과 수신감도를 산출하고 전체 영역에 대한 유한요소 해석 결과와 비교한다. 물성 추출의 정확도는 압전복합재료를 구성하는 폴리머의 탄성 특성과 밀접한 관련이 있음을 확인하고, 오차 원인을 분석하여 정확한 등가물성 산출을 위한 가이드라인을 제시한다. 압전복합재료 하이드로폰과 주변의 음향구조물을 포함하는 스테이브 규모에 대해서도 등가 모델링을 적용하여 추출된 물성의 정확도와 연산량 감소를 확인한다.

Keywords

Acknowledgement

본 연구는 국방과학연구소의 지원(UC18006DD)하에 수행되었습니다.

References

  1. T. R. Gururaja, W. A. Schulze, T. R. Shrout, A. Safari, L. Webster, and L. E. Cross, "High frequency applications of PZT/polymer composite materials," Ferroelectrics, 39, 1245-1248 (1981).
  2. W. A. Smith, "The role of piezocomposites in ultrasound transducers," Proc. IEEE Ultrason. Symp. 755-766 (1989).
  3. R. E. Newnham, D. P. Skinner, and L. E. Cross, "Connectivity and piezoelectric-pyroelectric composites," Mat. Res. Bull. 13, 525-536 (1978).
  4. W. A. Smith and B. A. Auld, "Modeling 1-3 composite piezoelectrics: Thickness-mode oscillations," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38, 40-47 (1991).
  5. W. A. Smith, "Modeling 1-3 composite piezoelectrics: Hydrostatic response," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 40, 41-49 (1993).
  6. M. Avellaneda and P. J. Swart, "Calculating the performance of 1-3 piezoelectric composites for hydrophone applications: An effective medium approach," J. Acoust. Soc. Am. 103, 1449-1467 (1998). https://doi.org/10.1121/1.421306
  7. G. Hayward, J. Bennett, and R. Hamilton, "A theoretical study on the influence of some constituent material properties on the behavior of 1-3 connectivity composite transducers," J. Acoust. Soc. Am. 98, 2187-2196 (1995).
  8. S.-W. Lee, Y.-B. Kim, J.-T. Ryu, and H.-D. Nam, "Acoustic properties of ultrasonic transducer using piezocomposites" (in Korean), J. Acoust. Soc. Kr. 26, 80-86 (2007).
  9. J. Kim, S. Pyo, and Y. Roh, "Derivation of single phase material properties equivalent to 1-3 piezoelectric composites by the resonant method" (in Korean), J. Acoust. Soc. Kr. 30, 368-376 (2011).
  10. H. Shin and Y. Roh, "Fabrication of a 2-2 mode piezocomposite and derivation of its equivalent properties" (in Korean), J. Acoust. Soc. Kr. 30, 436-445 (2011). https://doi.org/10.7776/ASK.2011.30.8.436
  11. B. C. Shin, M. S. Yoon, J. I. Im, Y. H. Kang, H. M. Jang, B. H. Park, and S. K. Baik, "Prediction of piezoelectric coefficients of PZT-Polymer composites by finite element method" (in Korean), J. Korean Ceram. Soc. 27, 23-26 (1990).
  12. H. Y. Shin, J. H. Kim, S. J. Lim, and J. I. Im, "Material properties evaluation of 1-3 type piezo-composite fabricated with ceramic injection molding technology" (in Korean), J. Korean Ceram. Soc. 48, 648-653 (2011).
  13. Y. Zhang, L. Wang, and L. Qin, "Finite element analysis and experimental study on 1-3 piezoelectric composites with modified polymer phase," Ferroelectrics, 537, 223-236 (2019).
  14. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007), pp. 35-37.
  15. C. H. Sherman and J. L. Butler, Transducers and Arrays for Underwater Sound (Springer, New York, 2007), pp. 289-294.
  16. Y. Je, Y. Cho, K. Kim, Y.-W. Kim, S. Park, and J.-M. Lee, "A study on temperature dependent acoustic receiving characteristics of underwater acoustic sensors" (in Korean), J. Acoust. Soc. Kr. 38, 214-221 (2019).