• Title/Summary/Keyword: 등가질량

Search Result 78, Processing Time 0.025 seconds

Structural Analysis of the Aluminum Extrusion Plate with Truss-Core (트러스 코어 헝상을 갖는 알루미늄 압출재의 구조 해석)

  • 장창두;이병삼;하윤석;김호경;송하철;문형석
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.16 no.2
    • /
    • pp.133-140
    • /
    • 2003
  • The sandwich plate has been widely used as an efficient structural member because it has high strength-to-weight and high stiffness-to-weight ratios. To properly design the aluminum extrusion plate , it is necessary to analyze structural behaviors of the extrusions, however, the aluminum extrusions have been rarely studied until now. In the optimization process through numerous iterative calculations, finite element analysis of the sandwich plate with hollow core section requires a considerable amount of computation time and cost. In this paper, the aluminum extrusion plate with truss-core is transformed into an equivalent homogeneous orthotropic plate with appropriate elastic constants. The procedure to evaluate accurate equivalent elastic constants is also established. Using these elastic constants, simple theoretical formulas of the stresses and deflection are proposed in case of the simply-supported orthotropic thick plate under uniform pressure. Through the comparison with the results by commercial FEM code(ANSYS), it is verified that the proposed simpified formula has a good efficiency and accuracy.

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models : Verification Tests (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law : 검증실험)

  • Kim, Nam-Sik;Lee, Ji-Ho;Chang, Sung-Pil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.35-43
    • /
    • 2004
  • Small-scale models have been frequently used for seismic performance tests because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material, added mass is demanded from a volumetric change and scale factor could be limited due to aggregate size. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor, equivalent modulus ratio and ultimate strain ratio. In this study, compressive strength tests are conducted to analyze the equivalent modulus ratio of micro-concrete to normal-concrete. Then, equivalent modulus ratios are divided into multi-phase damage levels, which are basically dependent on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test, considering equivalent multi-phase similitude law based on seismic damage levels, is developed. Test specimens, consisted of prototype structures and 1/5 scaled models as a reinforced concrete column, were designed and fabricated based on the equivalent modulus ratios already defined. Finally quasistatic and pseudodynamic tests on the specimens are carried out using constant and variable modulus ratios, and correlation between prototype and small-scale model is investigated based on their test results. It is confirmed that the equivalent multi-phase similitude law proposed in this study could be suitable for seismic performance tests on small-scale models.

A Study on Continuum Modeling of Large Platelike Lattice Structures (거대한 평판형 격자구조물의 연속체 모델링에 관한 연구)

  • 이우식;신현재
    • Computational Structural Engineering
    • /
    • v.3 no.4
    • /
    • pp.105-112
    • /
    • 1990
  • A rational and straightforward method is introduced for developing continuum models of large platelike periodic lattice structures based on energy equivalence, The procedure for developing continuum models involves using existing finite element matrices in calculating strain and kinetic energies of a repeating cell. The equivalent continuum plate properties are obtained from the direct comparison of the reduced stiffness and mass matrices for continuum and lattice plates. Numerical results prove that the method developed in this paper shows very good agreement with other well-recognized methods.

  • PDF

Vibration Control of Tower Structure under Wind Load (풍하중에 의한 타원형 구조물의 진동 제어)

  • Hwang Jae-Seung;Kim Yun-Seok;Joo Seok-Jun
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.427-430
    • /
    • 2002
  • The present parer outlines the system identification and vibration control performance of air traffic control tower of Yangyang international airport with tuned mass damper(TMD). From the free vibration test, natural frequency, damping ratio and mode shape of tower are obtained and these values are compared with the values from numerical analysis. In the vibration control test to evaluate the vibration control performance, equivalent damping ratio increased by tuned mass damper are obtained in case the TMD is operated as passive mode. Damping ratio of tower evaluated from free vibration test is about $1.0{\%}$. It is very low value than damping ratio recommended in general code. Damping ratio of passive mode is about $5{\%}$. These equivalent damping ratio increased by TMD is enough to enhance the serviceability of tower structure under wind load.

  • PDF

Equivalent mechanical model of smart actuators and optimal operating conditions (지능형 공진작동기의 기계적상사와 최적작동조건)

  • Kim, Jun-Sik
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.285-287
    • /
    • 2011
  • 본 논문에서는 지능형 작동기의 효율적 설계와 특성예측을 위하여 기계적 상사 모델을 개발하고, 작동기의 최적작동 조건을 고찰한다. 먼저 지능형 작동기의 기계적 상사는 단순한 2자유도 스프링-메스-뎀퍼 시스템으로 등가 시스템을 구현하였다. 이 때 스프링 강성계수는 시스템의 강성 또는 전기-기계 연성계수 등으로 상사되며, 전기회로 구성품 등은 질량, 뎀퍼 등으로 상사되어진다. 단순화된 기계적 상사모델을 이용하여 작동조건에서의 전기회로 구성품의 튜닝을 최적화 할 수 있다. 특히 작동기의 공진주파수에서의 특성을 고려하여 최적조건을 도출함으로써 그 성능을 극대화 할 수 있다.

  • PDF

Development of Electric Inertia Load for Traction System Combined Testing (전동차 조합시험을 위한 전기적 관성부하에 대한 연구)

  • Bae, Bon-Ho;Sul, Seung-Ki
    • Proceedings of the KIEE Conference
    • /
    • 1999.07a
    • /
    • pp.433-435
    • /
    • 1999
  • 전동차의 구동시스템 및 보조 전원장치 등의 제어가 고성능화되고 복잡해지면서 각 기기의 개별 시험이 아닌 조합시험을 통한 신뢰성의 확보가 점점 중요해지고 있다. 특히 구동시스템의 시험을 위해서는 실제 차량부하와 유사한 부하 특성을 조합시험장치가 제공하는 것이 중요하다. 전동차의 부하특성에서 가장 지배적인 역할을 하는 특성은 관성이다. 국내에 운용중인 조합시험장치들은 전동차의 직선 운동에 해당하는 등가 회전관성을 가지는 플라이휠(flywheel)을 이용하여 관성부하를 구현하고 있다. 본 논문에서는 이러한 관성부하를 기계적 질량이 아닌 서보시스템을 이용하여 구현할 경우의 장단점과 특성에 대해 알아보고, 그 적절한 구현방법을 제안하고자 한다. 또한 실험 및 실험 결과를 통해 그 타당성을 검증하고자 한다.

  • PDF

The Study of DVA used to Transfer Function (I) (전달함수를 이용한 동흡진기 설계에 대한 연구(I))

  • Choi, Joung-Hyun;Lim, Byoung-Duk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.9
    • /
    • pp.1457-1462
    • /
    • 2003
  • The problem of reducing the level of vibrations in structures arises in various branches of technology. For the calculation of systems equipped with DVAs, the frequencies of the protected system's free vibrations are determined first. In most practical problems system have to be considered continuous systems. It is important to obtain the detailed information about not the first frequency and the mode but anothers corresponding to it. So, this paper describes the method to obtain the accurate information about the combined discrete system. This information is obtained from the combined system's receptance. This paper shows the convenience when design the dynamic vibration absorber with the combined system's receptance.

Impedance Modeling and Frequency Response of Moving-Magnet Linear Actuator Considering Mass/Spring System (질량/스프링계를 고려한 가동자석형 왕복 액추에이터의 등가임피던스 모델링 및 주파수 특성해석)

  • Jang, Seok-Myeong;Choi, Jang-Young;Cho, Han-Wook;You, Dae-Joon;Jeong, Sang-Sub
    • Proceedings of the KIEE Conference
    • /
    • 2005.07b
    • /
    • pp.1303-1305
    • /
    • 2005
  • This paper deals with the impedance modeling and frequency response of moving-magnet linear actuator considering mass/spring system. By expressing mechanical components as electrical components such as impedance from the motion equation, this paper investigates not only the variation of system impedance according to system parameters such as moving mass, thrust constant, the coefficient of elasticity for spring and damping coefficient but also the variation of power vs. frequency for moving-magnet linear actuator with spring.

  • PDF

An Equivalent Multi-Phase Similitude Law for Pseudodynamic Test on Small-scale RC Models (RC 축소모형의 유사동적실험을 위한 Equivalent Multi-Phase Similitude Law)

  • ;;;Guo, Xun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.101-108
    • /
    • 2003
  • Small-scale models have been frequently used for experimental evaluation of seismic performance because of limited testing facilities and economic reasons. However, there are not enough studies on similitude law for analogizing prototype structures accurately with small-scale models, although conventional similitude law based on geometry is not well consistent in the inelastic seismic behavior. When fabricating prototype and small-scale model of reinforced concrete structures by using the same material. added mass is demanded from a volumetric change and scale factor could be limited due to size of aggregate. Therefore, it is desirable that different material is used for small-scale models. Thus, a modified similitude law could be derived depending on geometric scale factor and equivalent modulus ratio. In this study, compressive strength tests are conducted to analyze equivalent modulus ratio of micro-concrete to normal-concrete. Equivalent modulus ratios are divided into multi phases, which are based on ultimate strain level. Therefore, an algorithm adaptable to the pseudodynamic test. considering equivalent multi-phase similitude law based on seismic damage levels, is developed. In addition, prior to the experiment. it is verified numerically if the algorithm is applicable to the pseudodynamic test.

Dynamic Characteristics of Railway Structures under High-Speed Train Loading (고속열차 주행 시 동적하중을 받는 철도구조물의 진동 특성)

  • Rhee, Inkyu;Kim, Jae Min
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.121-128
    • /
    • 2020
  • The purpose of this study is to investigate the distribution patterns of displacement and acceleration fields in a nonlinear soil ground based on the interaction of high-speed train, wheel, rail, and ground. For this purpose, a high-speed train in motion was modeled as the actual wheel, and the vertical contact of wheel and rail and the lateral contact, caused by meandering motion, were simulated; this simulation was based on the moving mass analysis. The soil ground part was given the nonlinear behavior of the upper ground part by using the modified the Drucker-Prager model, and the changes in displacement and acceleration were compared with the behavior of the elastic and inelastic grounds. Using this analysis, the displacement and acceleration ranges close to the actual ground behavior were addressed. Additionally, the von-Mises stress and equivalent plastic strain at the ground were examined. Further, the equivalent plastic and total volumetric strains at each failure surface were examined. The variation in stresses, such as vertical stress, transverse pressure, and longitudinal restraint pressure of wheel-rail contact, with the time history was investigated using moving mass. In the case of nonlinear ground model, the displacement difference obtained based on the train travel is not large when compared to that of the elastic ground model, while the acceleration is caused to generate a large decrease.