• Title/Summary/Keyword: 등가선형해석

Search Result 318, Processing Time 0.023 seconds

Evaluation of Accuracy of Modified Equivalent Linear Method (수정된 등가선형해석기법의 정확성 평가)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Duhee;Kim, Kwangkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.6
    • /
    • pp.5-20
    • /
    • 2010
  • One-dimensional equivalent linear site response analysis is widely used in practice due to its simplicity, requiring only few input parameters, and low computational cost. The main limitation of the procedure is that it is essentially a linear method, in which the time dependent change in the soil properties cannot be modeled and constant values of shear modulus and damping is used throughout the duration of the analysis. Various forms of modified equivalent linear analyses have been developed to enhance the accuracy of the equivalent linear method by incorporating the dependence of the shear strain with the loading frequency. The methods are identical in that it uses the shear strain Fourier spectrum as the backbone of the analysis, but differ in the method in which the strain Fourier spectrum is smoothed. This study used two domestically measured soil profiles to perform a series of nonlinear, equivalent linear, and modified equivalent linear site response analyses to verify the accuracy of two modified procedures. The results of the analyses indicate that the modified equivalent linear analysis can highly overestimate the amplification of the high frequency components of the ground motion. The degree of overestimation is dependent on the characteristics of the input ground motion. Use of a motion rich in high frequency contents can result in unrealistic response.

Equivalent Damping Ratio of a SDOF Structure Combined with Coulomb and Viscous Damping (점성 및 마찰감쇠가 있는 단자유도 구조물의 등가감쇠비)

  • Seong, Ji-Young-Suck;Min, Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.449-453
    • /
    • 2010
  • 본 논문에서는 점성 및 감쇠가 있는 단자유도 구조물의 등가감쇠비를 효율적으로 구하는 방법을 제시하였다. 건물에 설치된 마찰감쇠기는 외력의 크기에 따라 정지와 운동의 상태를 반복하여 외부 입력에너지를 소산시키기 때문에 외력과 응답관계가 비선형이다. 마찰감쇠기가 설치된 단자유도 건물은 마찰감쇠기외에 점성감쇠가 동시에 존재하므로 해석적인 정해를 구하기가 어렵다. 등가감쇠비를 산정하기 위해서 첫째, 점성과 마찰감쇠가 있는 단자유도계 건물의 자유진동 정해를 통하여 변위응답과 가속도 응답특성을 분석하였다. 둘째, 자유진동의 경우 응답이 멈출 때까지 소산에너지식을 이용하여 등가점성감쇠비를 구하였다. 셋째, 조화가진 일 때는 수치해석을 통하여 마찰력비 $F_r$에 따른 응답 특성을 알아보았다. 넷째, 조화가진의 경우 에너지 균형식을 바탕으로 등가점성감쇠비를 유도하였다. 등가점성감쇠비는 변위응답비의 영향을 받으므로 응답을 알아야만 구할 수 있다. 건물 응답의 진동수 특성은 협소영역(narrow band)이므로 고유진동수에 의해 지배된다고 가정하여 등가점성감쇠비를 구하였다. 마지막으로, 유도한 자유진동과 조화가진의 등 가점성감쇠비를 이용한 등가선형운동방정식의 해를 비선형 수치해석 한 결과와 비교하여 검증하였다.

  • PDF

Prediction of Equivalent Elastic Modulus for Flexible Textile Composites according to Waviness Ratio of Fiber Tows (섬유다발의 굴곡도에 따른 유연직물복합재료의 등가탄성계수 예측)

  • Suh, Young-W.;Kim, Sung-Joon;Ahn, Seok-Min
    • Aerospace Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.73-79
    • /
    • 2010
  • In this study, the equivalent elastic modulus of flexible textile composites was predicted by nonlinear finite element analysis. The analysis was carried out considering the material nonlinearity of fiber tows and the geometrical nonlinearity during large deformation using commercial analysis software, ABAQUS. To account for the geometrical nonlinearity due to the large shear deformation of fiber tows, a user defined material algorithm was developed and inserted in ABAQUS. In results, nonlinear stress-strain curve for the flexible textile composites under uni-axial tension was predicted from which effective elastic modulus was obtained and compared to the test result. The effective elastic moduli were calculated for the various finite element models with different waviness ratio of fiber tow.

Verification of Frequency-Dependent Equivalent Linear Method (주파수 의존성을 고려한 등가선형해석기법의 검증)

  • Jeong, Chang-Gyun;Kwak, Dong-Yeop;Park, Du-Hee
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.12
    • /
    • pp.113-120
    • /
    • 2008
  • One-dimensional site response analysis is widely used to simulate the seismic site effects. The equivalent linear analysis, which is the most widely used type of site response analysis, is essentially a linear method. The method applies constant shear modulus and damping throughout the frequency range of the input motion, ignoring the dependence of the soil response on the loading frequency. A new type of equivalent linear analysis method that can simulate the frequency dependence of the soil behavior via frequency-strain curve was developed. Various forms of frequency-strain curves were proposed, and all curves were asserted to increase the accuracy of the solution. However, its validity has not been extensively proven and the effect of the shape of the frequency-strain curve is not known. This paper used two previously proposed frequency-strain curves and three additional curves developed in this study to evaluate the accuracy of the frequency-dependent equivalent linear method and the influence of the shape of the frequency-strain curves. In the evaluation, six recordings from three case histories were used. The results of the case study indicated that the shape of the frequency-strain curve has a dominant influence on the calculated response, and that the frequency dependent analysis can enhance the accuracy of the solution. However, a curve that results in the best match for all case histories did not exist and the optimum curve varied for each case. Since the optimum frequency-strain curve can not be defined, it is recommended that a suite of curves be used in the analysis.

Evaluation of Nonlinear Response for Moment Resisting Reinforced Concrete Frames Based on Equivalent SDOF System (등가 1 자유도계에 의한 철근콘크리트 모멘트 골조구조의 비선형 지진응답 평가법의 검토)

  • 송호산;전대한
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.1
    • /
    • pp.9-16
    • /
    • 2003
  • To evaluate the seismic performance of multistory building structures use an equivalent SDOF model to represent the resistance of the structure to deformation as it respond in its predominant mode. This paper presents a method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through perform nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. The hysteresis rules to be used an equivalent SDOF model is obtained from the pushover analysis. Comparing the peak inelastic response of a moment resisting reinforced concrete frames and an equivalent SDOF model, the adequacy and the validity of the converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. The representative lateral displacement of a moment resisting reinforced concrete frames is close to the height of the first modal participation vector \ulcorner$_1{\beta}$${_1{\mu}}=1$. It can be found that the hysteresis rule of an equivalent SDOF model have influence on the time history response. Therefore, it necessary for selecting hysteresis rules to consider hysteresis characteristics of a moment resisting reinforced concrete frames.

Equivalent SDF Systems Representing Steel Moment Resisting Frames (철골 모멘트 골조의 지진해석을 위한 등가 단자유도시스템)

  • Han, Sang-Whan;Moon, Ki-Hoon;Kim, Jin-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.3
    • /
    • pp.21-28
    • /
    • 2008
  • To evaluate the seismic performance of multi-degree of freedom(MDF) systems, repeated nonlinear response history analyses are often conducted, which require extensive computational efforts. To reduce the amount of computation required, equivalent single degree of freedom(SDF) systems representing complex multi-degree of freedom(MDF) systems have been developed. For the equivalent SDF systems, bilinear models and trilinear models have been most commonly used. In these models, the P-$\Delta$ effect due to gravity loads during earthquakes can be accounted for by assigning negative stiffness after elastic range. This study evaluates the adequacy of equivalent SDF systems having these hysteretic models to predict the actual response of steel moment resisting frames(SMRF). For this purpose, this study conducts cyclic pushover analysis, nonlinear time history analysis and incremental dynamic analysis(IDA) for SAC-Los Angeles 9-story buildings using nonlinear MDF models(exact) and equivalent SDF models(approximate). In addition, this study considers the strength limited model.

A New Hybrid Method for Nonlinear Soil-Structure Interaction Analysis (비선형 지반-구조물 상호작용해석을 위한 새로운 복합법)

  • 김재민;최준성;이종세
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.1-7
    • /
    • 2003
  • This paper presents a novel hybrid time-frequency-domain method for nonlinear soil-structure interaction(SSI) analysis. It employs, in a practical manner, a computer code for equivalent linear SSI analysis and a general-purpose nonlinear finite element program. The proposed method first (calculates dynamic responses on a truncated finite element boundary utilizing an equivalent linear SSI program in the frequency domain. Then, a general purpose nonlinear finite element program is employed to analyze the nonlinear SSI problem in the time domain, in which boundary conditions at the truncated boundary are imposed with the responses calculated in the previous frequency domain SSI analysis, In order to validate the proposed method, seismic response analyses are carried out for a 2-D underground subway station in a multi-layered half-space, For the analyses, a equivalent linear SSI code KIESSI-2D is coupled to ANSYS program. The numerical results indicate that the proposed methodology can be a viable solution for nonlinear SSI problems.

Optimization of the Television Packing System Using Equivalent Static Loads (등가정하중법을 이용한 텔레비전 포장재의 구조최적설계)

  • Lee, Youngmyung;Jung, Ui-Jin;Park, Gyung-Jin;Han, In-Sik;Kim, Tai-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.3
    • /
    • pp.311-318
    • /
    • 2015
  • A nonlinear dynamic response structural optimization process is proposed for the television (TV) packing system that protects the damage from a drop situation using the equivalent static loads (ESLs). Topology optimization using ESLs is carried out for conceptual design, and shape optimization using stress ESLs for a virtual model is performed for detailed design. Stress ESLs are static loads that generate the same displacement as well as the stress fields of linear static analysis as those of nonlinear dynamic analysis. Thus, the response of nonlinear dynamic analysis can be utilized as a constraint in the linear static structural optimization. An actual example is solved to validate the process. The drop test of a television packaging system is analyzed by LS-DYNA, and NASTRAN is used for optimization.

Capacity Spectrum Analysis using Equivalent SDOF Method and Equivalent Damping Method for RC Wall Structure (철근콘크리트 벽체구조물에 대한 등가단자유도 방법 및 등가 감쇠비 산정방법에 따른 역량스펙트럼해석)

  • Song, Jong-Keol;Jang, Dong-Hui;Kim, Hark-Soo;Chung, Yeong-Hwa
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.21 no.2
    • /
    • pp.169-187
    • /
    • 2008
  • Performance-based approaches as an alternative method of the existing force-based approach have gradually become recognized tools for the seismic design and evaluation. The maximum inelastic displacement response using capacity spectrum method (CSM) with elastic response spectrum is estimated from seismic response of equivalent linear system converted from nonlinear system. The purpose of this paper is to evaluate accuracy of capacity spectrum method using the equivalent SDOF methods of 4 types and the equivalent damping methods of 5 types for RC wall structure. In order to evaluate accuracy of capacity spectrum analysis, the shaking table test results for RC wall structures are compared with those by the capacity spectrum analysis. Also, the effect of bilinear capacity curves by two bilinear approximation methods for capacity spectrum analysis is compared.

Liquefaction Evaluation of Reclaimed Sites using an Effective Stress Analysis and an Equivalent Linear Analysis (유효응력해석과 등가선형해석을 이용한 매립지반의 액상화 평가)

  • Park, Sung-Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.2C
    • /
    • pp.83-94
    • /
    • 2008
  • In this study an effective stress analysis was performed to evaluate liquefaction potential and ground settlement for reclaimed sites. The effective stress model can simulate the stiffness degradation due to excess pore pressure and resulting ground deformation. It is applicable to a wide range of strain. An equivalent linear analysis suitable for low strain levels was also carried out to compare the effective stress analysis. Shear stress ratio calculated from an equivalent linear analysis was used to determine SPT blow count to prevent liquefaction. Depending on the magnitude of potential earthquake and fine contents, the SPT blow count was converted into an equivalent cone tip resistance. It was compared with the measured cone tip resistance. The measured elastic shear wave velocity and cone tip resistance from two reclaimed sites in Incheon were used to perform liquefaction analyses. Two liquefaction evaluation methods showed similar liquefaction potential which was evaluated continuously. The predicted excess pore pressure ratio of upper 20 m was between 40% and 70%. The calculated post-shaking settlement caused by excess pore pressure dissipation was less than 10 cm.