• Title/Summary/Keyword: 둔감추진기관

Search Result 12, Processing Time 0.021 seconds

IM Test and Evaluation of Reaction Level for Solid Rocker Motor (추진기관 둔감 시험평가 및 반응등급 판정)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Min, Byoung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.104-108
    • /
    • 2011
  • Insensitive Munitions(IM) test methods and passing criteria of MIL-STS-2105D revised in April 2011 were studied since MIL-STD-2105(NAVY) had been created in 1982. Passing criteria of each IM tests has not been established because domestic database of IM tests for rocket motors was not enough, even though IM test and evaluation methods were well established with the same level of advanced countries. In this study, direction of the development for IM of our country was suggested through investigation and analysis of revised test methods and passing criteria.

  • PDF

An Overview of IM Technology Development for Solid Rocket Motor (고체추진기관 둔감화 개발동향)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Min, Byoung-Sun
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.189-192
    • /
    • 2010
  • In this study, insensitive munitions(IM) policies and technologies of advanced countries for solid rocket motor were investigated. Development trends and caseworks of each part such as propellant and motor case of rocket motor for IM were also studied. Based on these investigation and analysis for IM rocket motor, directions of the development for IM rocket motor in our country were suggested.

  • PDF

A Development of Insensitive Munitions Technologies for Tactical Rocket Motors (고체추진기관 둔감화 기술 개발동향)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Hwang, Kab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.213-216
    • /
    • 2008
  • U. S. and NATO allies have recently increased their emphasis on reducing the hazards of tactical munitions that contain energetic materials and actively started many investigations on Insensitive munitions(IM) of missile propulsion. All subcomponents of rocket motor should be properly designed and understood to increase IM properties. Insensitive propellant, motor case, ignitor and mitigation devices are important components of IM technologies of rocket motors.

  • PDF

Fast Cook-Off Test and Evaluation for HTPE IM Rocket Motor (HTPE 둔감 추진기관의 급속가열 시험 및 평가)

  • Lee, Do-Hyung;Kim, Chang-Kee;Yeon, Jeong-Mo;Jung, Jung-Young;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.167-170
    • /
    • 2009
  • Fast cook-off test with rocket motors was performed and characteristics of the results were analyzed. The material of the motor case was carbon epoxy composite. The motor was loaded with HTPE propellants to improve the insensitive munitions characteristics. In the tests, sound pressure and heat flux sensors were used to determine the category of response according to the standard. The reaction response of all of the HTPE motors tested by fast cook-off was judged as Type V burning.

  • PDF

Impact Test and Evaluation for HTPE IM Rocket Motor (HTPE 둔감 추진기관의 충격 시험 및 평가)

  • Kim, Chang-Kee;Lee, Do-Hyung;Yeon, Jeong-Mo;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.163-166
    • /
    • 2009
  • Bullet and fragment impact test with rocket motors was performed and characteristics of the results were analyzed. The material of the motor case was carbon epoxy composite. The motor was loaded with HTPE propellants to improve the insensitive munitions characteristics. In the tests, sound pressure and heat flux sensors were used to determine the category of response according to the standard. The reaction response of all of the HTPE motors impacted by bullet and fragment was judged as Type V burning.

  • PDF

A Study on Insensitive Munition Test and Evaluation for Solid Rocket Motor (고체추진기관 둔감시험 평가 기법에 관한 연구)

  • Lee, Do-Hyung;Kim, Chang-Kee;Lee, Hwan-Gyu;Yoo, Ji-Chang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.05a
    • /
    • pp.129-132
    • /
    • 2010
  • The objective of IM rocket motor is to minimize the probability of inadvertent initiation and severity of subsequent collateral damage, hence it is important to define personnel and equipment survivability to a rocket motor accident. The violent response probability associated with shock, impact and thermal effects be minimized. And during production, transportation/storage and stack of rocket motor, sympathetic detonation, giving severe effects of the propagation of adverse reaction on its surroundings, be reduced. Hence Reaction type also based on reaction results of the overpressure, fragment throw and heat flux.

  • PDF

The Trend of Mitigation Devices for Insensitive Munition of Solid Rocket Motor (고체 추진기관 둔감화를 위한 완화장치의 연구 동향)

  • Ryu Byung-Tae;Yoon Ki-Eun;Jung Jin-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2006.05a
    • /
    • pp.77-80
    • /
    • 2006
  • Insensitive Munitions(IM) of solid propulsion system are defined as munitions that fulfil the performance and operational requirements, but will minimize the violence of a reaction when subjected to inadvertant stimuli. It should be clear that the reaction violence of rocket motor subjected to thermal stimuli can be mitigated by reducing confinement prior to propellant reaction. Devices designed to do this by venting the rocket motor case are commonly referred to as mitigation devices. The objective of this paper is to introduce the technical information related to the pyrotechnic mitigation devices for insensitive munition of solid rocket motor.

  • PDF

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byung-Tae;Lee, Do-Hyung;Ryoo, Baek-Neung;Choi, Hong-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.352-358
    • /
    • 2011
  • This paper describes on the study of mitigation technique in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. SCO test was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The rocket motor in SCO test was located in an oven at $50^{\circ}C$ for 7 hours. The temperature was regulated to be elevated at the rate of $3.3^{\circ}C$ per hour. Results showed Type V(Burning) reaction in this SCO test.

  • PDF

Reaction of an Insensitive Munitions(IM) Igniter for Solid Propulsion System (고체 추진기관 둔감화 점화 장치의 반응)

  • Ryu, Byungtae;Lee, Dohyung;Ryoo, Baekneung;Choi, Hongseok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.6
    • /
    • pp.85-91
    • /
    • 2012
  • This paper describes the results of study on reaction of insensitive igniter in which a pyrosensor is automatically sensing the rate of risk of fire or explosion of solid rocket motor exposed to an unexpected fire and makes the rocket motor burn itself safely. The Slow Cook Off(SCO) test following the regulation of MIL-STD-2105D was carried out with a rocket motor loaded with HTPB propellant, in which a thermal pyrosensor igniter was installed. The auto-ignition temperature measured was approximately $140^{\circ}C$ and it corresponded to Type V(Burning) reaction in SCO test, while the temperature by Kissinger equation was calculated to be $165.5^{\circ}C$.

Insensitive Munitions Test for Solid Rocket Motor (고체 추진기관의 둔감탄약 시험)

  • 윤현걸;장승교;차홍석;장석태
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.29-29
    • /
    • 1998
  • 실전 배치되어 운용 중인 무기체계는 여러 형태의 사고 위험이 항상 존재한다 이중에서도 특히 항공기나 함정에서 발생하는 사고는 그 피해가 막대하게 커질 수도 있어 항공기나 함정 자체에 위협을 줄 수도 있다. 이러한 사고위험으로부터 인적, 물적 자원을 보호하기 위하여 둔감탄약(Insensitive Munitions)에 대한 인식이 높아지고 있으며, 아울러 이러한 무기 체계를 효과적으로 시험 평가하는 규격들이 검토되기 시작하여 1991년에 "Hazards Assesment Tests for Non-Nuclear Ordnance, DoD-STD-2105"를 기초로 한 MIL-STD-2105B가 채택되었다. 본 논문에서는 MIL-STD-2105B의 해석과 그에 따른 둔감탄약 시험에 포함되는 Bullet Impact Test, Fast Cookoff Test, Slow Cookoff Test, Fragment Impact Test, Sympathetic Detonation Test 등의 시험들의 세부적인 시험방법과 그 결과에 대한 판정 기준을 서술하였다. 또한 유도무기의 추진기관을 모델로 하여 둔감탄약 시험의 기준을 제시하였고 이 시험을 통과하기 위하여 향후 연구, 개발하여야 할 분야를 서술하였다.

  • PDF